Advertisement

Applied Microbiology and Biotechnology

, Volume 87, Issue 2, pp 467–477 | Cite as

Bacteria causing important diseases of citrus utilise distinct modes of pathogenesis to attack a common host

  • Adrián Alberto Vojnov
  • Alexandre Morais do Amaral
  • John Maxwell Dow
  • Atilio Pedro Castagnaro
  • Marìa Rosa Marano
Mini-Review

Abstract

In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell–cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.

Keyword

Citrus 

Notes

Acknowledgements

MRM, APC and AAV are Career Investigators of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina and are supported by Agencia Nacional de Promoción Científica y Tecnológica. JMD is supported by a Principal Investigator Award 07/IN.1/B955 from the Science Foundation of Ireland. AMdoA received a fellowship from CNPq. We thank Luciano Kishi for his help with the Venn diagram.

References

  1. Andrade MO, Alegria MC, Guzzo CR, Docena C, Rosa MC, Ramos CH, Farah CS (2006) The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol 62:537–551CrossRefGoogle Scholar
  2. Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJ, Slater H, Dow JM, Williams P, Daniels MJ (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566CrossRefGoogle Scholar
  3. Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424CrossRefGoogle Scholar
  4. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512CrossRefGoogle Scholar
  5. Bove JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37Google Scholar
  6. Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37Google Scholar
  7. Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4:141–157CrossRefGoogle Scholar
  8. Callaway E (2008) Bioterror: the green menace. Nature 452:148–150CrossRefGoogle Scholar
  9. Canteros BI (2004) Management of citrus canker in Argentina. A review. In: Ait-Oubahou A, El-Otmani M (eds) Proceedings of the Tenth International Society of Citriculture Congress, Agadir, Morocco, 15–20 February 2004, vol 1. International Society of Citriculture, Agadir, pp 448–451Google Scholar
  10. Capoor SP, Rao DG, Viswanat SM (1967) Diaphorina citri Kuway., a vector of greening disease of citrus in India. Indian J Agric Sci 37:572–576Google Scholar
  11. Chatterjee S, Newman KL, Lindow SE (2008a) Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape. Mol Plant Microb Interact 21:1309–1315CrossRefGoogle Scholar
  12. Chatterjee S, Wistrom C, Lindow SE (2008b) A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci U S A 105:2670–2675CrossRefGoogle Scholar
  13. Colnaghi Simionato AV, da Silva DS, Lambais MR, Carrilho E (2007) Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. J Mass Spectrom 42:1375–1381CrossRefGoogle Scholar
  14. Cubero J, Graham JH (2002) Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Appl Environ Microbiol 68:1257–1264CrossRefGoogle Scholar
  15. D'Argenio DA, Miller SI (2004) Cyclic di-GMP as a bacterial second messenger. Microbiology 150:2497–2502CrossRefGoogle Scholar
  16. da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Menck CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–463CrossRefGoogle Scholar
  17. de Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Goldman GH, Yanai GM, Muto NH, de Oliveira RC, Nunes LR, Machado MA (2003) Analysis of gene expression in two growth states of Xylella fastidiosa and its relationship with pathogenicity. Mol Plant Microb Interact 16:867–875CrossRefGoogle Scholar
  18. de Souza AA, Takita MA, Coletta-Filho HD, Caldana C, Yanai GM, Muto NH, de Oliveira RC, Nunes LR, Machado MA (2004) Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro. FEMS Microbiol Lett 237:341–353CrossRefGoogle Scholar
  19. Doddapaneni H, Liao H, Lin H, Bai X, Zhao X, Civerolo EL, Irey M, Coletta-Filho H, Pietersen G (2008) Comparative phylogenomics and multi-gene cluster analyses of the citrus Huanglongbing (HLB)-associated bacterium Candidatus Liberibacter. BMC Res Notes 1:72CrossRefGoogle Scholar
  20. Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A 100:10995–11000CrossRefGoogle Scholar
  21. Dow JM, Daniels MJ (1994) Pathogenicity determinants and global regulation of pathogenicity of Xanthomonas campestris pv. campestris. Curr Top Microbiol Immunol 192:29–41Google Scholar
  22. Dow JM, Feng JX, Barber CE, Tang JL, Daniels MJ (2000) Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. Microbiology 146(Pt 4):885–891Google Scholar
  23. Dow JM, Fouhy Y, Lucey JF, Ryan RP (2006) The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol Plant Microb Interact 19:1378–1384CrossRefGoogle Scholar
  24. Dow M (2008) Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads. Sci Signal 1:pe23CrossRefGoogle Scholar
  25. Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, Liu L, Vahling CM, Gabriel DW, Williams KP, Dickerman A, Sun Y, Gottwald T (2009) Complete genome sequence of citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus ' obtained through metagenomics. Mol Plant Microb Interact 22:1011–1020CrossRefGoogle Scholar
  26. Fouhy Y, Lucey JF, Ryan RP, Dow JM (2006) Cell–cell signaling, cyclic di-GMP turnover and regulation of virulence in Xanthomonas campestris. Res Microbiol 157:899–904CrossRefGoogle Scholar
  27. Gottig N, Garavaglia BS, Garofalo CG, Orellano EG, Ottado J (2009) A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE 4:e4358CrossRefGoogle Scholar
  28. Halbert SE, Manjunath KL (2004) Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and ssessment of risk in Florida. Fla Entomol 87:330–353CrossRefGoogle Scholar
  29. He YW, Zhang LH (2008) Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev 32:842–857CrossRefGoogle Scholar
  30. Hsiang LK (1956) Yellow shoot of citrus. Symptomatology. Investigations in the cause of huanglongbing. Natural transmission and spread. General conclusions. Acta Phytopathologica Sinica 2:1–42Google Scholar
  31. Jagoueix S, Bove JM, Garnier M (1994) The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria. Int J Syst Bacteriol 44:379–386CrossRefGoogle Scholar
  32. Kay S, Bonas U (2009) How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol 12:37–43CrossRefGoogle Scholar
  33. Kay S, Hahn S, Marois E, Hause G, Bonas U (2007) A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–651CrossRefGoogle Scholar
  34. Lahaye T, Bonas U (2001) Molecular secrets of bacterial type III effector proteins. Trends Plant Sci 6:479–485CrossRefGoogle Scholar
  35. Laia ML, Moreira LM, Dezajacomo J, Brigati JB, Ferreira CB, Ferro MI, Silva AC, Ferro JA, Oliveira JC (2009) New genes of Xanthomonas citri subsp. citri involved in pathogenesis and adaptation revealed by a transposon-based mutant library. BMC Microbiol 9:12CrossRefGoogle Scholar
  36. Lima JEO, Miranda VS, Hartung JS, Brlansky RH, Coutinho A, Roberto SR, Carlos EF (1998) Coffee leaf scorch bacterium: axenic culture, pathogenicity, and comparison with Xylella fastidiosa of citrus. Plant Dis 82:94–97CrossRefGoogle Scholar
  37. McClean APD, Oberholzer PCJ (1965) Citrus psylla, a vector of the greening disease of sweet orange. S Afr J Agric Sci 8:297–298Google Scholar
  38. Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586CrossRefGoogle Scholar
  39. Newman KL, Almeida RP, Purcell AH, Lindow SE (2004) Cell–cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc Natl Acad Sci U S A 101:1737–1742CrossRefGoogle Scholar
  40. Perez-Donoso AG, Sun Q, Roper MC, Greve LC, Kirkpatrick B, Labavitch JM (2010) Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines. Plant Physiol 152:1748–1759Google Scholar
  41. Purcell AH, Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 34:131–151CrossRefGoogle Scholar
  42. Rigano LA, Siciliano F, Enrique R, Sendin L, Filippone P, Torres PS, Questa J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant Microb Interact 20:1222–1230CrossRefGoogle Scholar
  43. Roper MC, Greve LC, Warren JG, Labavitch JM, Kirkpatrick BC (2007) Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Mol Plant Microb Interact 20:411–419CrossRefGoogle Scholar
  44. Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He YW, Zhang LH, Heeb S, Camara M, Williams P, Dow JM (2006) Cell–cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103:6712–6717CrossRefGoogle Scholar
  45. Sechler A, Schuenzel EL, Cooke P, Donnua S, Thaveechai N, Postnikova E, Stone AL, Schneider WL, Damsteegt VD, Schaad NW (2009) Cultivation of 'Candidatus Liberibacter asiaticus ', 'Ca. L. africanus', and 'Ca. L. americanus' associated with huanglongbing. Phytopathology 99:480–486CrossRefGoogle Scholar
  46. Siciliano F, Torres PS, Sendin L, Bermejo C, Filippone P, Vellice G, Ramallo J, Castagnaro A, Vojnov A, Marano MR (2006) Analysis of the molecular basis of Xanthomonas axonopodis pv. citri pathogenesis in Citrus limon. Electron J Biotechnol 9:200–204CrossRefGoogle Scholar
  47. Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R, Alves LM, Araya JE, Baia GS, Baptista CS, Barros MH, Bonaccorsi ED, Bordin S, Bove JM, Briones MR, Bueno MR, Camargo AA, Camargo LE, Carraro DM, Carrer H, Colauto NB, Colombo C, Costa FF, Costa MC, Costa-Neto CM, Coutinho LL, Cristofani M, Dias-Neto E, Docena C, El-Dorry H, Facincani AP, Ferreira AJ, Ferreira VC, Ferro JA, Fraga JS, Franca SC, Franco MC, Frohme M, Furlan LR, Garnier M, Goldman GH, Goldman MH, Gomes SL, Gruber A, Ho PL, Hoheisel JD, Junqueira ML, Kemper EL, Kitajima JP, Krieger JE, Kuramae EE, Laigret F, Lambais MR, Leite LC, Lemos EG, Lemos MV, Lopes SA, Lopes CR, Machado JA, Machado MA, Madeira AM, Madeira HM, Marino CL, Marques MV, Martins EA, Martins EM, Matsukuma AY, Menck CF, Miracca EC, Miyaki CY, Monteriro-Vitorello CB, Moon DH, Nagai MA, Nascimento AL, Netto LE, Nhani A Jr, Nobrega FG, Nunes LR, Oliveira MA, de Oliveira MC, de Oliveira RC, Palmieri DA, Paris A, Peixoto BR, Pereira GA, Pereira HA Jr, Pesquero JB, Quaggio RB, Roberto PG, Rodrigues V, de MRAJ, de Rosa VE Jr, de Sa RG, Santelli RV, Sawasaki HE, da Silva AC, da Silva AM, da Silva FR, da Silva WA Jr, da Silveira JF, Silvestri ML, Siqueira WJ, de Souza AA, de Souza AP, Terenzi MF, Truffi D, Tsai SM, Tsuhako MH, Vallada H, Van Sluys MA, Verjovski-Almeida S, Vettore AL, Zago MA, Zatz M, Meidanis J, Setubal JC (2000) The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis. Nature 406:151–159CrossRefGoogle Scholar
  48. Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM (2000) A two-component system involving an HD-GYP domain protein links cell–cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38:986–1003CrossRefGoogle Scholar
  49. Stall RE, Seymour CP (1983) Canker, a threat to citrus in the Gulfcoast states. Plant Dis 67:581–585CrossRefGoogle Scholar
  50. Stokstad E (2006) Agriculture. New disease endangers Florida's already-suffering citrus trees. Science 312:523–524CrossRefGoogle Scholar
  51. Sun XA, Stall RE, Jones JB, Cubero J, Gottwald TR, Graham JH, Dixon WN, Schubert TS, Chaloux PH, Stromberg VK, Lacy GH, Sutton BD (2004) Detection and characterization of a new strain of citrus canker bacteria from key Mexican lime and Alemow in South Florida. Plant Dis 88:1179–1188CrossRefGoogle Scholar
  52. Swarup S, Yang Y, Kingsley MT, Gabriel DW (1992) An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol Plant Microb Interact 5:204–213Google Scholar
  53. Tang JL, Liu YN, Barber CE, Dow JM, Wootton JC, Daniels MJ (1991) Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol Gen Genet 226:409–417CrossRefGoogle Scholar
  54. Teixeira D (2005) First report of a huanglongbing-like disease of citrus in São Paulo State, Brazil, and association of a new Liberibacter species, ‘Candidatus Liberibacter americanus’, with the disease. Plant Dis 89:107CrossRefGoogle Scholar
  55. Torres PS, Malamud F, Rigano LA, Russo DM, Marano MR, Castagnaro AP, Zorreguieta A, Bouarab K, Dow JM, Vojnov AA (2007) Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environ Microbiol 9:2101–2109CrossRefGoogle Scholar
  56. Tyler HL, Roesch LF, Gowda S, Dawson WO, Triplett EW (2009) Confirmation of the sequence of 'Candidatus Liberibacter asiaticus ' and assessment of microbial diversity in huanglongbing-infected citrus phloem using a metagenomic approach. Mol Plant Microb Interact 22:1624–1634CrossRefGoogle Scholar
  57. Van Sluys MA, Monteiro-Vitorello CB, Camargo LE, Menck CF, Da Silva AC, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189CrossRefGoogle Scholar
  58. Verniere C, Hartung JS, Pruvost OP, Civerolo EL, Alvarez AM, Maestri P, Luisetti J (1998) Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. European J Plant Pathol 104:477–487CrossRefGoogle Scholar
  59. Wang LH, He Y, Gao Y, Wu JE, Dong YH, He C, Wang SX, Weng LX, Xu JL, Tay L, Fang RX, Zhang LH (2004) A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912CrossRefGoogle Scholar
  60. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404CrossRefGoogle Scholar
  61. Zhao X (1981) Cirtus yellow shoot disease (huanglongbing)—a review. Proc Int Soc Citriculture 1:466–469Google Scholar
  62. Zhu W, Yang B, Chittoor JM, Johnson LB, White FF (1998) AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol Plant Microb Interact 11:824–832CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Adrián Alberto Vojnov
    • 1
  • Alexandre Morais do Amaral
    • 2
    • 3
  • John Maxwell Dow
    • 4
  • Atilio Pedro Castagnaro
    • 5
  • Marìa Rosa Marano
    • 6
  1. 1.Instituto de Ciencia y Tecnología “Dr. Cesar Milstein”, Fundación Pablo CassaráConsejo Nacional de Investigaciones Científicas y técnicas (CONICET)Buenos AiresArgentina
  2. 2.Embrapa Recursos Genéticos e BiotecnologiaBrasíliaBrazil
  3. 3.Centro de Citricultura Sylvio MoreiraCordeiropolisBrazil
  4. 4.BIOMERIT Research Centre, Department of MicrobiologyNational University of IrelandCorkIreland
  5. 5.Sección Biotecnología de la Estación Experimental Agroindustrial Obispo Columbres—UA-INSIBIO (CONICET-UNT)TucumánArgentina
  6. 6.Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Área Virología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina

Personalised recommendations