Applied Microbiology and Biotechnology

, Volume 87, Issue 5, pp 1699–1713 | Cite as

Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities

  • Amor Larrosa-Guerrero
  • Keith Scott
  • Krishna P. Katuri
  • Carlos Godinez
  • Ian M. Head
  • Thomas Curtis
Biotechnological Products and Process Engineering


The influence of various carbon anodes; graphite, sponge, paper, cloth, felt, fiber, foam and reticulated vitreous carbon (RVC); on microbial fuel cell (MFC) performance is reported. The feed was brewery wastewater diluted in domestic wastewater. Biofilms were grown at open circuit or under an external load. Microbial diversity was analysed as a function of current and anode material. The bacterial community formed at open circuit was influenced by the anode material. However at closed circuit its role in determining the bacterial consortia formed was less important than the passage of current. The rate and extent of organic matter removal were similar for all materials: over 95% under closed circuit. The biofilm in MFCs working at open circuit and in the control reactors, increased COD removal by up to a factor of nine compared with that for baseline reactors. The average voltage output was 0.6 V at closed circuit, with an external resistor of 300 kΩ and 0.75 V at open circuit for all materials except RVC. The poor performance of this material might be related to the surface area available and concentration polarizations caused by the morphology of the material and the structure of the biofilm. Peak power varied from 1.3 mW m−2 for RVC to 568 mW m−2 for graphite with biofilm grown at closed circuit.


Microbial fuel cell Wastewater treatment Bacteria selection Anode Carbon materials 



The support of the European Union for Transfer of Knowledge award (MTKD-CT-2004-517215) for biological fuel cells, the EPSRC and the Spanish Ministry of Science and Innovation (MICINN ENE2006-09395) are acknowledged. Mrs. Fiona L. Read and Mr. Alberto Alcolea are acknowledged as well for their support in microbial analysis and SEM.

Supplementary material

253_2010_2624_MOESM1_ESM.doc (8.2 mb)
ESM 1 (DOC 8379 kb)


  1. Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78(3):409–418CrossRefGoogle Scholar
  2. Antonio Rinaldi, B. M., Garavaglia V, Licoccia S, Di Nardo P, Traversa E (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy and Environmental Science (In Press)Google Scholar
  3. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21(10):1229–1232CrossRefGoogle Scholar
  4. Cheng S, Logan BE (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem Commun 9(3):492–496CrossRefGoogle Scholar
  5. Conover WJ (1980) Practical Nonparametric Statistics. Wiley, New YorkGoogle Scholar
  6. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25(5):464–482CrossRefGoogle Scholar
  7. Dumas C, Mollica A, Féron D, Basséguy R, Etcheverry L, Bergel A (2007) Marine microbial fuel cell: use of stainless steel electrodes as anode and cathode materials. Electrochim Acta 53(2):468–473CrossRefGoogle Scholar
  8. Eaton Andrew DC (2005) Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation. Washington, DCGoogle Scholar
  9. Fan MZ, Liang P, Cao XX, Huang X (2008) Effect of the initial anode potential on electricity generation in microbial fuel cell. Huanjing Kexue/Environmental Science 29(1):263–267Google Scholar
  10. Freguia S, Rabaey K, Yuan Z, Keller J (2007) Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Environ Sci Technol 41(8):2915–2921CrossRefGoogle Scholar
  11. Freguia S, Rabaey K, Yuan Z, Keller J (2008) Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42(21):7937–7943CrossRefGoogle Scholar
  12. Friedrich JM, Ponce-de-Leon C, Reade GW, Walsh FC (2004) Reticulated vitreous carbon as an electrode material. J Electroanal Chem 561:203–217CrossRefGoogle Scholar
  13. Hitchens GD (1989) Electrode surface microstructures in studies of biological electron transfer. Trends Biochem Sci 14(4):152–155CrossRefGoogle Scholar
  14. Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresour Technol 100(2):717–723CrossRefGoogle Scholar
  15. Jiang D, Li B (2007) ACS National Meeting Book of Abstracts. Boston, MAGoogle Scholar
  16. Kim GT, Webster G, Wimpenny JWT, Kim BH, Kim HJ, Weightman AJ (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J Appl Microbiol 101(3):698–710CrossRefGoogle Scholar
  17. Larrosa-Guerrero A, Lozano LJ, Katuri KP, Head I, Scott K, Godinez C (2009) On the repeatability and reproducibility of experimental two-chambered microbial fuel cells. Fuel 88: 1852–1857Google Scholar
  18. Lee HS, Parameswaran P, Kato-Markus A, Torres CI, Rittmann BE (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501–1510CrossRefGoogle Scholar
  19. Liu JL, Lowy DA, Baumann RG, Tender LM (2007) Influence of anode pretreatment on its microbial colonization. J Appl Microbiol 102(1):177–183CrossRefGoogle Scholar
  20. Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41(9):3341–3346CrossRefGoogle Scholar
  21. Logan BE (2004) Penn State cuts cost of waste water fuel cell. Ind Bioprocess 26(7):2–3Google Scholar
  22. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192CrossRefGoogle Scholar
  23. Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR (2006) Harvesting energy from the marine sediment-water interface II. Kinetic activity of anode materials. Biosens Bioelectron 21(11):2058–2063CrossRefGoogle Scholar
  24. Lu N, Zhou SG, Zhang JT, Ni JR (2009) Electricity generation from corn steepwater using microbial fuel cell technology. Huanjing Kexue/Environmental Science 30(2):563–567Google Scholar
  25. Manohar AK, Bretschger O, Nealson KH, Mansfeld F (2008a) The polarization behavior of the anode in a microbial fuel cell. Electrochim Acta 53(9):3508–3513Google Scholar
  26. Manohar AK, Bretschger O, Nealson KH, Mansfeld F (2008b) The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell. Bioelectrochemistry 72(2):149–154CrossRefGoogle Scholar
  27. Marcus AK, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98(6):1171–1182CrossRefGoogle Scholar
  28. Mitchell AC, Phillips AJ, Hamilton MA, Gerlach R, Hollis WK, Kaszuba JP, Cunningham AB (2008) Resilience of planktonic and biofilm cultures to supercritical CO2. J Supercrit Fluids 47(2):318–325CrossRefGoogle Scholar
  29. Morozan A, Stamatin I, Stamatin L, Dumitru A, Scott K (2007) Carbon electrodes for microbial fuel cells. J Optoelectron Adv Mater 9(1):221–224Google Scholar
  30. Muyzer G, De Waal EC, Uitterlinden AG, (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 165 vRNA. Appl Environ Microbiol 59:695–700Google Scholar
  31. Park DH, Zeikus JG (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol Bioeng 81(3):348–355CrossRefGoogle Scholar
  32. Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41(13):2921–2940CrossRefGoogle Scholar
  33. Picioreanu C, Katuri KP, Head IM, Van Loosdrecht MCM, Scott K (2008) Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci Technol 57:965–971CrossRefGoogle Scholar
  34. Pietron JJ, Jones-Meehan J, Little B, Ray R, Ringeisen BR (2005) ACS National Meeting Book of Abstracts. Washington, DCGoogle Scholar
  35. Prat C, Ruiz-Rueda O, Trias R, Anticó E, Capone D, Sefton M, Bañeras L (2009) Molecular fingerprinting by PCR-denaturing gradient gel electrophoresis reveals differences in the levels of microbial diversity for musty-earthy tainted corks. Appl Environ Microbiol 75(7):1922–1931CrossRefGoogle Scholar
  36. Qiao Y, Bao SJ, Li CM, Cui XQ, Lu ZS, Guo J (2008) Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2(1):113–119CrossRefGoogle Scholar
  37. Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382CrossRefGoogle Scholar
  38. Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1(1):9–18CrossRefGoogle Scholar
  39. Ramasamy RP, Ren Z, Mench MM, Regan JM (2008) Impact of initial biofilm growth on the anode impedance of microbial fuel cells. Biotechnol Bioeng 101(1):101–108CrossRefGoogle Scholar
  40. Rinaldi A, Mercheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E (2008) Engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy and Environmental Sciences 1:417–429Google Scholar
  41. Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41(9):1984–1994CrossRefGoogle Scholar
  42. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26(8):450–459CrossRefGoogle Scholar
  43. Schröder U, Nießen J, Scholz F (2004) ACS, Division of Environmental Chemistry—Preprints of Extended Abstracts, Philadelphia, PA, 17–21 August 2008Google Scholar
  44. Scott K, Cotlarciuc I, Hall D, Lakeman JB, Browning D (2008) Power from marine sediment fuel cells: the influence of anode material. J Appl Electrochem 38: 1–7Google Scholar
  45. Scott K, Rimbu GA, Katuri KP, Prasad KK, Head IM (2007) Application of modified carbon anodes in microbial fuel cells. Process Saf Environ Prot 85(5 B):481–488CrossRefGoogle Scholar
  46. Scully JR, Silverman David C, Kendig Martin W (1993) Electrochemical Impedance: analysis and Interpretation. ASTM, PhiladelphiaGoogle Scholar
  47. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138CrossRefGoogle Scholar
  48. ter Heijne A, Hamelers HVM, Saakes M, Buisman CJN (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta 53(18):5697–5703CrossRefGoogle Scholar
  49. Wang X, Feng Y, Ren N, Wang H, Lee H, Li N, Zhao Q (2009) Accelerated start-up of two-chambered microbial fuel cells: Effect of anodic positive poised potential. Electrochim Acta 54(3):1109–1114CrossRefGoogle Scholar
  50. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182(10):2675–2679CrossRefGoogle Scholar
  51. Xing D, Zou Y, Cheng S, Regan JM Logan BE (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Science & Tech 42(11):4146–4151CrossRefGoogle Scholar
  52. Zhan YL, Wang Q, Zhang PP, Yan GX, Guo SH (2008) Investigation on influence factors and mechanism of microbial fuel cell. Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities 29(1):144–148Google Scholar
  53. Zhang E, Xu W, Diao G, Shuang C (2006) Electricity generation from acetate and glucose by sedimentary bacterium attached to electrode in microbial-anode fuel cells. J Power Sources 161(2):820–825CrossRefGoogle Scholar
  54. Zhang T, Zeng Y, Chen S, Ai X, Yang H (2007) Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes. Electrochem Commun 9(3):349–353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Amor Larrosa-Guerrero
    • 1
  • Keith Scott
    • 1
  • Krishna P. Katuri
    • 1
  • Carlos Godinez
    • 3
  • Ian M. Head
    • 2
  • Thomas Curtis
    • 2
  1. 1.School of Chemical Engineering and Advanced MaterialsNewcastle UniversityNewcastle upon TyneUK
  2. 2.School of Civil EngineeringNewcastle UniversityNewcastle upon TyneUK
  3. 3.Departamento de Ingeniería Química y AmbientalUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations