Applied Microbiology and Biotechnology

, Volume 87, Issue 4, pp 1475–1485 | Cite as

Functional analysis of genes for benzoate metabolism in the albicidin biosynthetic region of Xanthomonas albilineans

Applied Genetics and Molecular Biotechnology

Abstract

Albicidins are potent DNA-gyrase-inhibiting antibiotics and phytotoxins synthesised by Xanthomonas albilineans. Functions have been deduced for some clustered biosynthetic genes, including a PKS-NRPS megasynthase, methyltransferases and regulatory genes, and resistance genes including a transporter and a gyrase-binding protein. More puzzling is the presence in this cluster of apparent aromatic metabolism genes. Here, we describe functional analysis of several such genes and propose a model for their role. An apparent benzoate CoA ligase (xabE) proved essential for albicidin production and pathogenicity. A neighbouring operon includes genes for p-aminobenzoate (PABA) metabolism. A PABA synthase fusion (pabAB) restored prototrophy in pabA and pabB mutants of Escherichia coli, proving functionality. Inactivation of pabAB increased susceptibility to sulphanilamide but did not block albicidin production. X. albilineans contains a remote pabB gene which evidently supplies enough PABA for albicidin biosynthesis in culture. Additional capacity from pabAB may be advantageous in more demanding environments such as infected plants. Downstream from pabAB are a known resistance gene (albG) and ubiC which encodes a p-hydroxybenzoate (PHBA) synthase. PHBA protects X. albilineans from inhibition by PABA. Therefore, coordinated expression may protect X. albilineans against toxicity of both the PABA intermediate and the albicidin product, under conditions that induce high-level antibiotic biosynthesis.

Keywords

Benzoate CoA ligase PABA synthase PabAB fusion PHBA synthase Albicidin Benzoate metabolism Xanthomonas albilineans 

References

  1. Birch RG (2001) Xanthomonas albilineans & the antipathogenesis approach to disease control. Mol Plant Pathol 2:1–11CrossRefGoogle Scholar
  2. Birch RG, Patil SS (1983) The relation of blocked chloroplast differentiation to sugarcane leaf scald disease. Phytopathology 73:1368–1374CrossRefGoogle Scholar
  3. Birch RG, Patil SS (1985a) Antibiotic and process for the production thereof. USA Patent 4525354Google Scholar
  4. Birch RG, Patil SS (1985b) Preliminary characterization of an antibiotic produced by Xanthomonas albilineans which inhibits DNA synthesis in Escherichia coli. J Gen Microbiol 131:1069–1075Google Scholar
  5. Birch RG, Patil SS (1987) Evidence that an albicidin-like phytotoxin induces chlorosis in sugarcane leaf scald disease by blocking plastid DNA replication. Physiol Mol Plant Pathol 30:207–214CrossRefGoogle Scholar
  6. Blanc V, Gil P, BamasJacques N, Lorenzon S, Zagorec M, Schleuniger J, Bisch D, Blanche F, Debussche L, Crouzet J, Thibaut D (1997) Identification and analysis of genes from Streptomyces pristinaespiralis encoding enzymes involved in the biosynthesis of the 4-dimethylamino-L-phenylalanine precursor of pristinamycin I. Mol Microbiol 23:191–202CrossRefGoogle Scholar
  7. Bostock JM, Huang G, Hashimi SM, Zhang LH, Birch RG (2006) A DHA14 drug efflux gene from Xanthomonas albilineans confers high-level albicidin antibiotic resistance in Escherichia coli. J Appl Microbiol 101:151–160CrossRefGoogle Scholar
  8. Carmona M, Zamarro MT, Blazquez B, Durante-Rodriguez G, Juarez JF, Valderrama JA, Barragan MJL, Garcia JL, Diaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133CrossRefGoogle Scholar
  9. Chang Z, Sun Y, He J, Vining LC (2001) p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology 147:2113–2126Google Scholar
  10. Cheng YQ, Coughlin JM, Lim SK, Shen B (2009) Type I polyketide synthases that require discrete acyltransferases. Methods Enzymol 459:165–186CrossRefGoogle Scholar
  11. Coleman JP, Hudson LL, McKnight SL, Farrow JM, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255CrossRefGoogle Scholar
  12. Das A, Khosla C (2009) Biosynthesis of aromatic polyketides in bacteria. Accounts Chem Research 42:631–639CrossRefGoogle Scholar
  13. Davis BD (1951) Inhibition of Escherichia coli by p-aminobenzoic acid and its reversal by p-hydroxybenzoic acid. J Exp Med 94:243–254CrossRefGoogle Scholar
  14. Debruijn FJ, Lupski JR (1984) The Use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids—a review. Gene 27:131–149CrossRefGoogle Scholar
  15. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning sustem for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351CrossRefGoogle Scholar
  16. Donadio S, Staver MJ, Mcalpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679CrossRefGoogle Scholar
  17. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496CrossRefGoogle Scholar
  18. Gil JA, Campelo-Diez AB (2003) Candicidin biosynthesis in Streptomyces griseus. Appl Microbiol Biotechnol 60:633–642Google Scholar
  19. Goncharoff P, Nichols BP (1988) Evolution of aminobenzoate synthases—nucleotide-sequences of Salmonella typhimurium and Klebsiella aerogenes pabB. Mol Biol Evol 5:531–548Google Scholar
  20. Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590CrossRefGoogle Scholar
  21. Hashimi S, Wall M, Smith AB, Maxwell A, Birch RG (2007) The phytotoxin albicidin is a novel inhibitor of DNA gyrase. Antimicrob Agents Chemother 51:181–187CrossRefGoogle Scholar
  22. He J, Hertweck C (2003) Iteration as programmed event during polyketide assembly; molecular analysis of the aureothin biosynthesis gene cluster. Chem Biol 10:1225–1232CrossRefGoogle Scholar
  23. Huang M, Pittard J (1967) Genetic analysis of mutant strains of Escherichia coli requiring p-aminobenzoic acid for growth. J Bacteriol 93:1938–1942Google Scholar
  24. Huang G, Zhang L, Birch RG (2000a) Analysis of the genes flanking xabB: a methyltransferase gene is involved in albicidin biosynthesis in Xanthomonas albilineans. Gene 255:327–333CrossRefGoogle Scholar
  25. Huang G, Zhang L, Birch RG (2000b) Albicidin antibiotic and phytotoxin biosynthesis in Xanthomonas albilineans requires a phosphopantetheinyl transferase gene. Gene 258:193–199CrossRefGoogle Scholar
  26. Huang G, Zhang L, Birch RG (2000c) Characterization of the acyl carrier protein gene and the fab gene locus in Xanthomonas albilineans. FEMS Microbiol Lett 193:129–136CrossRefGoogle Scholar
  27. Huang G, Zhang L, Birch RG (2001) A multifunctional polyketide–peptide synthase for albicidin biosynthesis in Xanthomonas albilineans. Microbiology 147:631–642Google Scholar
  28. Lawrence J, Cox GB, Gibson F (1974) Biosynthesis of ubiquinone in Escherichia coli K-12—biochemical and genetic characterization of a mutant unable to convert chorismate into 4-hydroxybenzoate. J Bacteriol 118:41–45Google Scholar
  29. Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19:70–99CrossRefGoogle Scholar
  30. Nakai T, Mizutani H, Miyahara I, Hirotsu K, Takeda S, Jhee KH, Yoshimura T, Esaki N (2000) Three-dimensional structure of 4-amino-4-deoxychorismate lyase from Escherichia coli. J Biochem 128:29–38Google Scholar
  31. Parsons JF, Jensen PY, Pachikara AS, Howard AJ, Eisenstein E, Ladner JE (2002) Structure of Escherichia coli aminodeoxychorismate synthase: architectural conservation and diversity in chorismate-utilizing enzymes. Biochemistry 41:2198–2208CrossRefGoogle Scholar
  32. Penfold RJ, Pemberton JM (1992) An improved suicide vector for construction of chromosomal insertion mutations in bacteria. Gene 118:145–146CrossRefGoogle Scholar
  33. Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, Couloux A, Darrasse A, Gouzy J, Jacques MA, Lauber E, Manceau C, Mangenot S, Poussier S, Segurens B, Szurek B, Verdier V, Arlat M, Rott P (2009) The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genomics 10:616CrossRefGoogle Scholar
  34. Rott PC, Costet L, Davis MJ, Frutos R, Gabriel DW (1996) At least two separate gene clusters are involved in albicidin production by Xanthomonas albilineans. J Bacteriol 178:4590–4596Google Scholar
  35. Royer M, Costet L, Vivien E, Bes M, Cousin A, Damais A, Pieretti I, Savin A, Megessier S, Viard M, Frutos R, Gabriel DW, Rott PC (2004) Albicidin pathotoxin produced by Xanthomonas albilineans is encoded by three large PKS and NRPS genes present in a gene cluster also containing several putative modifying, regulatory, and resistance genes. Mol Plant–Microbe Interact 17:414–427CrossRefGoogle Scholar
  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  37. Smith N, Roitberg AE, Rivera E, Howard A, Holden MJ, Mayhew M, Kaistha S, Gallagher DT (2006) Structural analysis of ligand binding and catalysis in chorismate lyase. Arch Biochem Biophys 445:72–80CrossRefGoogle Scholar
  38. Staskawicz BJ, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794Google Scholar
  39. Swedberg G, Skold O (1980) Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial-resistance to sulfonamides. J Bacteriol 142:1–7Google Scholar
  40. Vivien E, Pitorre D, Cociancich S, Pieretti I, Gabriel DW, Rott PC, Royer M (2007) Heterologous production of albicidin: a promising approach to overproducing and characterizing this potent inhibitor of DNA gyrase. Antimicrob Agents Chemother 51:1549–1552CrossRefGoogle Scholar
  41. Wall MK, Birch RG (1997) Genes for albicidin biosynthesis and resistance span at least 69 kb in the genome of Xanthomonas albilineans. Lett Appl Microbiol 24:256–260CrossRefGoogle Scholar
  42. Ye QZ, Liu J, Walsh CT (1990) Para-aminobenzoate synthesis in Escherichia coli—purification and characterization of PabB as aminodeoxychorismate synthase and enzyme-X as aminodeoxychorismate lyase. Proc Natl Acad Sci USA 87:9391–9395CrossRefGoogle Scholar
  43. Yu TW, Bai LQ, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci USA 99:7968–7973CrossRefGoogle Scholar
  44. Zhang L, Birch RG (1997) The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc Natl Acad Sci USA 94:9984–9989CrossRefGoogle Scholar
  45. Zhang JH, Quigley NB, Gross D (1997) Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv syringae. Appl Environ Microbiol 63:2771–2778Google Scholar
  46. Zhang L, Xu J, Birch RG (1998) Factors affecting biosynthesis by Xanthomonas albilineans of albicidin antibiotics and phytotoxins. J Appl Microbiol 85:1023–1028Google Scholar
  47. Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024CrossRefGoogle Scholar
  48. Zhang YR, Bai LQ, Deng ZX (2009) Functional characterization of the first two actinomycete 4-amino-4-deoxychorismate lyase genes. Microbiology 155:2450–2459CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Botany Department—BIOLThe University of QueenslandBrisbaneAustralia

Personalised recommendations