Applied Microbiology and Biotechnology

, Volume 87, Issue 4, pp 1487–1497 | Cite as

Fermentation characteristics of Dekkera bruxellensis strains

  • Johanna Blomqvist
  • Thomas Eberhard
  • Johan Schnürer
  • Volkmar Passoth
Applied Microbial and Cell Physiology

Abstract

The influence of pH, temperature and carbon source (glucose and maltose) on growth rate and ethanol yield of Dekkera bruxellensis was investigated using a full-factorial design. Growth rate and ethanol yield were lower on maltose than on glucose. In controlled oxygen-limited batch cultivations, the ethanol yield of the different combinations varied from 0.42 to 0.45 g (g glucose)−1 and growth rates varied from 0.037 to 0.050 h−1. The effect of temperature on growth rate and ethanol yield was negligible. It was not possible to model neither growth rate nor ethanol yield from the full-factorial design, as only marginal differences were observed in the conditions tested. When comparing three D. bruxellensis strains and two industrial isolates of Saccharomyces cerevisiae, S. cerevisiae grew five times faster, but the ethanol yields were 0–13% lower. The glycerol yields of S. cerevisiae strains were up to six-fold higher compared to D. bruxellensis, and the biomass yields reached only 72–84% of D. bruxellensis. Our results demonstrate that D. bruxellensis is robust to large changes in pH and temperature and may have a more energy-efficient metabolism under oxygen limitation than S. cerevisiae.

Keywords

Dekkera bruxellensis Saccharomyces cerevisiae Ethanol yield Growth rate Glycerol yield Full-factorial design 

Notes

Acknowledgments

This study was financed by the research programmes MicroDrive (http://microdrive.slu.se) and DOM (http://www.mistra.org/dom) at the Swedish University of Agricultural Sciences, Uppsala. We are grateful to Dr. Su-Lin Leong, Department of Microbiology, Swedish University of Agricultural Sciences for proofreading the manuscript.

References

  1. Abbott DA, Hynes SH, Ingledew WM (2005) Growth rates of Dekkera/Brettanomyces yeasts hinder their ability to compete with Saccharomyces cerevisiae in batch corn mash fermentations. Appl Microbiol Biot 66:641–647CrossRefGoogle Scholar
  2. Aguilar Uscanga MG, Delia ML, Strehaiano P (2003) Brettanomyces bruxellensis: effect of oxygen on growth and acetic acid production. Appl Microbiol Biotechnol 61:157–162Google Scholar
  3. Aguilar Uscanga MG, Escudero Abarca BI, Gomez Rodriguez J, Cortes Garcia R (2007) Carbon sources and their effect on growth, acetic acid and ethanol production by Brettanomyces bruxellensis in batch culture. J Food Process Eng 30:13–23CrossRefGoogle Scholar
  4. Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira M, Loureiro V (2008) Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. Int J Food Microbiol 121:201–207CrossRefGoogle Scholar
  5. Basillo ACM, de Araujo PRL, de Morais JOF, de Silva EA, de Morais MA, Simoes DA (2008) Detection and identification of wild yeast contaminants of the industrial fuel ethanol fermentation process. Curr Microbiol 56:322–326CrossRefGoogle Scholar
  6. Blomqvist J, Schnürer J, Passoth V (2007) Industrial ethanol production by a consortium of Dekkera bruxellensis and the lactic acid bacterium Lactobacillus vini. Poster abstract. Yeast 24:S27CrossRefGoogle Scholar
  7. Brandam C, Castro-Martinez C, Delia ML, Ramon-Portugal F, Strehaiano P (2008) Effect of temperature on Brettanomyces bruxellensis: metabolic and kinetic aspects. Can J Microbiol 54:11–18CrossRefGoogle Scholar
  8. Castro-Martinez C, Escudero-Abarca BI, Rodriguez JG, Hayward-Jones R, Aguilar-Uscanga MG (2005) Effect of physical factors on acetic acid production in Brettanomyces strains. J Food Process Eng 28:133–143CrossRefGoogle Scholar
  9. Chatonnet P, Dubourdieu D, Boidron JN, Pons M (1992) The origin of ethylphenols in wine. J Sci Food Agr 60:165–178CrossRefGoogle Scholar
  10. Ciani M, Ferraro L (1997) Role of oxygen on acetic acid production by Brettanomyces/Dekkera in winemaking. J Sci Food Agr 75:489–495CrossRefGoogle Scholar
  11. Couto JA, Barbosa A, Hogg T (2005) A simple cultural method for the presumptive detection of the yeasts Brettanomyces/Dekkera in wines. Lett Appl Microbiol 41:505–510CrossRefGoogle Scholar
  12. Dellweg H, Rizzi M, Methner H, Debus D (1984) Xylose fermentation by yeasts. 3. Comparison of Pachysolen tannophilus and Pichia stipitis. Biotechnol Lett 6:395–400CrossRefGoogle Scholar
  13. Dias L, Pereira-da-Silva S, Tavares M, Malfeito-Ferreira M, Loureiro V (2003) Factors affecting the production of 4-ethylphenol by the yeast Dekkera bruxellensis in enological conditions. Food Microbiol 20:377–384CrossRefGoogle Scholar
  14. Enrique M, Marcos JF, Yuste M, Martinez M, Valles S, Manzanares P (2008) Inhibition of the wine spoilage yeast Dekkera bruxellensis by bovine lactoferrin-derived peptides. Int J Food Microbiol 127:229–234CrossRefGoogle Scholar
  15. Eriksson LJE, Kettaneh-Wold N, Wikström C, Wold S (2008) Design of experiments, principles and applications. Umetrics Academy, Umetrics AB, Umeå, Sweden. www.umetrics.com
  16. Fiaux J, Petek Çakar Z, Sonderegger M, Wütrich K, Szyperski T, Sauer U (2002) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180CrossRefGoogle Scholar
  17. Fredlund E, Blank LM, Schnürer J, Sauer U, Passoth V (2004) Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol 70:5905–5911CrossRefGoogle Scholar
  18. Fredlund E, Beerlage C, Melin P, Schnürer J, Passoth V (2006) Oxygen and carbon-source regulated expression of PDC and ADH genes in the respiratory yeast Pichia anomala. Yeast 23:1137–1149CrossRefGoogle Scholar
  19. Freer SN, Dien B, Matsuda S (2003) Production of acetic acid by Dekkera/Brettanomyces yeasts under conditions of constant pH. World J Microb Biot 19:101–105CrossRefGoogle Scholar
  20. Hellborg L, Piskur J (2009) Complex nature of the genome in a wine-spoilage yeast, Dekkera bruxellensis. Eukaryot Cell 8:1739–1749CrossRefGoogle Scholar
  21. Klinner U, Fluthgraf S, Freese S, Passoth V (2005) Aerobic induction of respiro-fermentative growth by decreasing oxygen tensions in the respiratory yeast Pichia stipitis. Appl Microbiol Biotechnol 67:247–253CrossRefGoogle Scholar
  22. Kurtzman CP, Fell JW (1998) The yeasts. A taxonomic study. Elsevier Science BV, AmsterdamGoogle Scholar
  23. Liberal ATD, Basilio ACM, Resende AD, Brasileiro BTV, da Silva-Filho EA, de Morais JOF, Simões DA, Morais MA Jr (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102:538–547Google Scholar
  24. Meroth CB, Hammes WP, Hertel C (2003) Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:7453–7461CrossRefGoogle Scholar
  25. Miniac MD (1989) Contamination of industrial alcoholic fermentations by yeasts of the genus Brettanomyces. Ind Aliment Agricol 106:559–563Google Scholar
  26. Nielsen J, Villadsen J, Lidén G (2003) Bioreaction engineering principles. Kluwer Academic, New YorkGoogle Scholar
  27. Passoth V, Blomqvist J, Schnürer J (2007) Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl Environ Microbiol 73:4354–4356CrossRefGoogle Scholar
  28. Phister TG, Mills DA (2003) Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl Environ Microbiol 69:7430–7434CrossRefGoogle Scholar
  29. Phowchinda O, Deliadupuy ML, Strehaiano P (1995) Effects of acetic acid on growth and fermentative activity of Saccharomyces cerevisiae. Biotechnol Lett 17:237–242CrossRefGoogle Scholar
  30. Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408CrossRefGoogle Scholar
  31. Smith MT, Yamazaki M, Poot GA (1990) Dekkera, Brettanomyces and Eeniella—electrophoretic comparison of enzymes and DNA–DNA homology. Yeast 6:299–310CrossRefGoogle Scholar
  32. Spindler DD, Wyman CE, Grohmann K, Philippidis GP (1992) Evaluation of the cellobiose-fermenting yeast Brettanomyces custersii in the simultaneous saccharification and fermentation of cellulose. Biotechnol Lett 14:403–407CrossRefGoogle Scholar
  33. Truesdale GA, Downing AI, Lowden GF (1955) The solubility of oxygen in pure water and sea-water. J Appl Chem 5:53–62CrossRefGoogle Scholar
  34. Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224Google Scholar
  35. van Nedervelde L, Debourg A (1995) Properties of Belgian acid beers and their microflora. II. Biochemical properties of Brettanomyces yeasts. Cerevisia Biotechnol 20:43–48Google Scholar
  36. von Stockar U, Maskow T, Liu JS, Marison IW, Patino R (2006) Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol 121:517–533CrossRefGoogle Scholar
  37. Wijsman MR, Vandijken JP, Vankleeff BHA, Scheffers WA (1984) Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditons (Custer’s effect). Antonie van Leeuwenhook J Microb 50:183–192CrossRefGoogle Scholar

Copyright information

© icSpringer-Verlag 2010

Authors and Affiliations

  • Johanna Blomqvist
    • 1
  • Thomas Eberhard
    • 1
  • Johan Schnürer
    • 1
  • Volkmar Passoth
    • 1
  1. 1.Department of MicrobiologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations