Applied Microbiology and Biotechnology

, Volume 87, Issue 5, pp 1867–1874 | Cite as

OdhI dephosphorylation kinetics during different glutamate production processes involving Corynebacterium glutamicum

  • Kenza-Amel Boulahya
  • Emmanuel Guedon
  • Stéphane Delaunay
  • Christian Schultz
  • Joseph Boudrant
  • Michael Bott
  • Jean-Louis Goergen
Applied Microbial and Cell Physiology

Abstract

In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase complex was shown to be controlled by the phosphorylation of a 15-kDa protein OdhI by different serine/threonine protein kinases. In this paper, the phosphorylation status and kinetics of OdhI dephosphorylation were assessed during glutamate producing processes triggered by either a biotin limitation or a temperature upshock from 33°C to 39°C. A dephosphorylation of OdhI in C. glutamicum 2262 was observed during the biotin-limited as well as the temperature-induced glutamate-producing process. Deletion of pknG in C. glutamicum 2262 did not affect the phosphorylation status of OdhI during growth and glutamate production phases triggered by a temperature upshock, though a 40% increase in the specific glutamate production rate was measured. These results suggest that, under the conditions analyzed, PknG is not the kinase responsible for the phosphorylation of OdhI in C. glutamicum 2262. The phosphorylation status of OdhI alone is, as expected, not the only parameter that determines the performance of a specific strain, as no clear relation between the specific glutamate production rate and OdhI phosphorylation level was demonstrated.

Keywords

Corynebacterium glutamicum Glutamate OdhI Biotin limitation Temperature increase PknG 

Notes

Acknowledgments

This work was supported by the French National Research Agency (ANR) through the “Corypar” project (ANR-05-JCJC-0069-01).

References

  1. Asakura Y, Kimura E, Usuda Y, Kawahara Y, Matsui K, Osumi T, Nakamatsu T (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microbiol 73:1308–1319CrossRefGoogle Scholar
  2. Barthe P, Roumestand C, Canova MJ, Kremer L, Hurard C, Molle V, Cohen-Gonsaud M (2009) Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism. Structure 17:568–578CrossRefGoogle Scholar
  3. Bona R, Moser A (1997) Modelling of the glutamic acid production with Corynebacterium glutamicum under biotin limitation. Bioprocess Eng 17:139–142Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Delaunay S, Gourdon P, Lapujade P, Mailly E, Oriol E, Engasser JM, Lindley ND, Goergen JL (1999a) An improved temperature-triggered process for glutamate production with Corynebacterium glutamicum. Enzyme Microb Technol 25:762–768CrossRefGoogle Scholar
  6. Delaunay S, Uy D, Baucher MF, Engasser JM, Guyonvarch A, Goergen JL (1999b) Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation. Metab Eng 1:334–343CrossRefGoogle Scholar
  7. Fiuza M, Canova MJ, Zanella-Cléon I, Becchi MA, Cozzone J, Mateos LM, Kremer L, Gil JA, Molle V (2008) From the characterization of the four serine/threonine protein kinases (PknA/B/G/L) of Corynebacterium glutamicum towards the role of PknA and PknB in cell division. J Biol Chem 283:18099–18112CrossRefGoogle Scholar
  8. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109CrossRefGoogle Scholar
  9. Kawahara Y, Takahashi-Fuke K, Shimizu E, Nakamatsu T, Nakamori S (1997) Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 61:1109–1112CrossRefGoogle Scholar
  10. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25CrossRefGoogle Scholar
  11. Kimura E (2005) l-Glutamate production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, pp 439–463Google Scholar
  12. Kimura E, Yagoshi C, Kawahara Y, Ohsumi T, Nakamatsu T, Tokuda H (1999) Glutamate overproduction in Corynebacterium glutamicum triggered by a decrease in the level of a complex comprising DtsR and a biotin-containing subunit. Biosci Biotechnol Biochem 63:1274–1278CrossRefGoogle Scholar
  13. Kinoshita S, Udaka S, Shimono M (1957) Studies on the amino acid fermentation: part I. Production of L-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205CrossRefGoogle Scholar
  14. Momose H, Takagi T (1978) Glutamic acid production in biotin-rich media by temperature sensitive mutants of Brevibacterium lactofermentum, a novel fermentation process. Agric Biol Chem 10:1911–1917Google Scholar
  15. Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307CrossRefGoogle Scholar
  16. O’Hare HM, Durán R, Cerveñansky C, Bellinzoni M, Wehenkel AM, Pritsch O, Obal G, Baumgartner J, Vialaret J, Johnsson K, Alzari PM (2008) Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70:1408–1423CrossRefGoogle Scholar
  17. Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700CrossRefGoogle Scholar
  18. Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928CrossRefGoogle Scholar
  19. Schultz C, Niebisch A, Schwaiger A, Viets U, Metzger S, Bramkamp M, Bott M (2009) Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol Microbiol 74:724–741CrossRefGoogle Scholar
  20. Shiio I, Ôtsuka SI, Takahashi M (1962) Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids. J Biochem 51:56–62Google Scholar
  21. Shimizu H, Hirasawa T (2006) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch Volker F (ed) Microbiology monographs amino acid biosynthesis—pathways regulation and metabolic engineering. Springer, Germany, pp 1–38Google Scholar
  22. Sun Z, Yu Z, Yang Y, Jin H, Yang H (1989) Fermentative production of L-glutamic acid from rice hydrolysate by temperature-sensitive mutant Corynebacterium crenatum N1. Gongye Weishengwu 19:9–14Google Scholar
  23. Takinami K, Yamada Y, Okada H (1966) Biochemical effects of fatty acids and its derivatives on L-glutamic acid fermentation. Agric Biol Chem 30:674–682Google Scholar
  24. Uy D, Delaunay S, Germain P, Engasser JM, Goergen JL (2003) Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J Biotechnol 104:173–184CrossRefGoogle Scholar
  25. Villarino A, Duran R, Wehenkel A, Fernandez P, England P, Brodin P, Cole ST, Zimny-Arndt U, Jungblut PR, Cervenansky C, Alzari PM (2005) Proteomic identification of M tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J Mol Biol 350:953–963CrossRefGoogle Scholar
  26. Von der Osten CH, Gioannetti C, Sinskey AJ (1989) Design of a defined for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol Lett 11:11–16CrossRefGoogle Scholar
  27. Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kenza-Amel Boulahya
    • 1
  • Emmanuel Guedon
    • 1
  • Stéphane Delaunay
    • 1
  • Christian Schultz
    • 2
  • Joseph Boudrant
    • 1
  • Michael Bott
    • 2
  • Jean-Louis Goergen
    • 1
  1. 1.Laboratoire Réactions et Génie des Procédés, UPR CNRS 3349, Institut National Polytechnique de LorraineNancy UniversitéVandoeuvre-lès-NancyFrance
  2. 2.Institut für Biotechnologie 1JülichGermany

Personalised recommendations