Applied Microbiology and Biotechnology

, Volume 87, Issue 4, pp 1407–1414 | Cite as

Cloning, characterization, and engineering of fungal L-arabinitol dehydrogenases

Biotechnologically Relevant Enzymes and Proteins

Abstract

L-Arabinitol 4-dehydrogenase (LAD) catalyzes the conversion of L-arabinitol to L-xylulose with concomitant NAD+ reduction in fungal L-arabinose catabolism. It is an important enzyme in the development of recombinant organisms that convert L-arabinose to fuels and chemicals. Here, we report the cloning, characterization, and engineering of four fungal LADs from Penicillium chrysogenum, Pichia guilliermondii, Aspergillus niger, and Trichoderma longibrachiatum, respectively. The LAD from P. guilliermondii was inactive, while the other three LADs were NAD+-dependent and showed high catalytic activities, with P. chrysogenum LAD being the most active. T. longibrachiatum LAD was the most thermally stable and showed the maximum activity in the temperature range of 55–65°C with the other LADs showed the maximum activity in the temperature range of 40–50°C. These LADs were active from pH 7 to 11 with an optimal pH of 9.4. Site-directed mutagenesis was used to alter the cofactor specificity of these LADs. In a T. longibrachiatum LAD mutant, the cofactor preference toward NADP+ was increased by 2.5 × 104-fold, whereas the cofactor preference toward NADP+ of the P. chrysogenum and A. niger LAD mutants was also drastically improved, albeit at the expense of significantly reduced catalytic efficiencies. The wild-type LADs and their mutants with altered cofactor specificity could be used to investigate the functionality of the fungal L-arabinose pathways in the development of recombinant organisms for efficient microbial L-arabinose utilization.

Keywords

Arabinose fermentation Xylitol production Alcohol dehydrogenase Cofactor specificity Ethanol production 

Supplementary material

253_2010_2593_MOESM1_ESM.doc (68 kb)
ESM(DOC 68.5 kb)

References

  1. Almeida JRM, Hahn-Hägerdal B (2009) Developing Saccharomyces cerevisiae strains for second generation bioethanol: improving xylose fermentation and inhibitor tolerance. Int Sugar J 111:172–180Google Scholar
  2. Banfield MJ, Salvucci ME, Baker EN, Smith CA (2001) Crystal structure of the NADP(H)-dependent ketose reductase from Bemisia argentifolii at 2.3 angstrom resolution. J Mol Biol 306:239–250CrossRefGoogle Scholar
  3. Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2Google Scholar
  4. Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact 8:40CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  6. Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18:295–331CrossRefGoogle Scholar
  7. de Groot MJL, Prathumpai W, Visser J, Ruijter GJG (2005) Metabolic control analysis of Aspergillus niger l-arabinose catabolism. Biotechnol Prog 21:1610–1616CrossRefGoogle Scholar
  8. Eliasson A, Hofmeyr JS, Pedler S, Hahn-Hägerdal B (2001) The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinat xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 29:288–297CrossRefGoogle Scholar
  9. Ellis KJ, Morrison JF (1982) Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol 87:405–426CrossRefGoogle Scholar
  10. Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) The expression of a Pichia stipitis xylose reductase mutant with higher K m for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93:665–673CrossRefGoogle Scholar
  11. Korkhin Y, Kalb AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol 278:967–981CrossRefGoogle Scholar
  12. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24CrossRefGoogle Scholar
  13. Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:243–255CrossRefGoogle Scholar
  14. Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S (2009a) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 100:2392–2398CrossRefGoogle Scholar
  15. Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S (2009b) Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP(+)-dependent xylitol dehydrogenase gene. Appl Environ Microbiol 75:3818–3822CrossRefGoogle Scholar
  16. Mcmillan JD, Boynton BL (1994) Arabinose utilization by xylose-fermenting yeasts and fungi. Appl Biochem Biotechnol 45–6:569–584CrossRefGoogle Scholar
  17. Ng K, Ye RQ, Wu XC, Wong SL (1992) Sorbitol dehydrogenase from Bacillus subtilis—purification, characterization, and gene cloning. J Biol Chem 267:24989–24994Google Scholar
  18. Nordling E, Jornvall H, Persson B (2002) Medium-chain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modelling. Eur J Biochem 269:4267–4276CrossRefGoogle Scholar
  19. Pail M, Peterbauer T, Seiboth B, Hametner C, Druzhinina I, Kubicek CP (2004) The metabolic role and evolution of l-arabinitol 4-dehydrogenase of Hypocrea jecorina. Eur J Biochem 271:1864–1872CrossRefGoogle Scholar
  20. Pauly TA, Ekstrom JL, Beebe DA, Chrunyk B, Cunningham D, Griffor M, Kamath A, Lee SE, Madura R, Mcguire D, Subashi T, Wasilko D, Wafts P, Mylari BL, Oates PJ, Adams PD, Rath VL (2003) X-ray crystallographic and kinetic studies of human sorbitol dehydrogenase. Structure 11:1071–1085CrossRefGoogle Scholar
  21. Richard P, Londesborough J, Putkonen M, Kalkkinen N, Penttila M (2001) Cloning and expression of a fungal l-arabinitol 4-dehydrogenase gene. J Biol Chem 276:40631–40637CrossRefGoogle Scholar
  22. Richard P, Verho R, Putkonen M, Londesborough J, Penttila M (2003a) The fungal l-arabinose catabolic pathway. Yeast 20:S218–S218Google Scholar
  23. Richard P, Verho R, Putkonen M, Londesborough J, Penttila M (2003b) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res 3:185–189CrossRefGoogle Scholar
  24. Riveros-Rosas H, Julian-Sanchez A, Villalobos-Molina R, Pardo JP, Pina E (2003) Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily. Eur J Biochem 270:3309–3334CrossRefGoogle Scholar
  25. Sarkar G, Sommer SS (1990) The megaprimer method of site-directed mutagenesis. Biotechniques 8:404–407Google Scholar
  26. Sullivan RP (2009) Engineering a fungal L-arabinose pathway toward the co-utilization of hemicellulosic sugars for production of xylitol. Ph. D. Dissertation University of Illinois, UrbanaGoogle Scholar
  27. Sullivan R, Zhao HM (2007) Cloning, characterization, and mutational analysis of a highly active and stable l-arabinitol 4-dehydrogenase from Neurospora crassa. Appl Microbiol Biotechnol 77:845–852CrossRefGoogle Scholar
  28. Verho R, Putkonen M, Londesborough J, Penttila M, Richard P (2004) A novel NADH-linked l-xylulose reductase in the l-arabinose catabolic pathway of yeast. J Biol Chem 279:14746–14751CrossRefGoogle Scholar
  29. Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340–10349CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Byoungjin Kim
    • 1
  • Ryan P. Sullivan
    • 1
    • 2
  • Huimin Zhao
    • 1
    • 2
    • 3
  1. 1.Energy Biosciences InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Chemistry, Biochemistry and Bioengineering, Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations