Applied Microbiology and Biotechnology

, Volume 87, Issue 2, pp 427–444 | Cite as

Microbial biosurfactants production, applications and future potential

  • Ibrahim M. Banat
  • Andrea Franzetti
  • Isabella Gandolfi
  • Giuseppina Bestetti
  • Maria G. Martinotti
  • Letizia Fracchia
  • Thomas J. Smyth
  • Roger Marchant
Mini-Review

Abstract

Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.

Keywords

Biosurfactants Bioemulsifiers Surfactants Emulsifiers 

References

  1. Abalos A, Pinazo A, Infante MR, Casals M, García F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371CrossRefGoogle Scholar
  2. Agarwal P, Sharma DK (2009) Studies on the production of biosurfactant for the microbial enhanced oil recovery by using bacteria isolated from oil contaminated wet soil. Pet Sci Technol 27:1880–1893CrossRefGoogle Scholar
  3. Al-Ajiani MM, Sheikh MA, Ahmad Z, Hasnain S (2007) Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microbial Cell Factory 6:17CrossRefGoogle Scholar
  4. Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268CrossRefGoogle Scholar
  5. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factory 8:63CrossRefGoogle Scholar
  6. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptide-lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494CrossRefGoogle Scholar
  7. Baltz RH, Miao V, Wrigley SK (2005) Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 22:717–741CrossRefGoogle Scholar
  8. Banat IM (1995) Biosurfactants production and use in microbial enhanced oil recovery and pollution remediation: a review. Bioresour Technol 51:1–12CrossRefGoogle Scholar
  9. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508CrossRefGoogle Scholar
  10. Bao MT, Kong XP, Jiang GC, Wang XL, Li XM (2009) Laboratory study on activating indigenous microorganisms to enhance oil recovery in Shengli oilfield. J Pet Sci Eng 66:42–46CrossRefGoogle Scholar
  11. Barkay T, Navon-Venezia S, Ron EZ, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702Google Scholar
  12. Basak P, Adhikari B, Banerjee I, Maiti TK (2009) Sustained release of antibiotic from polyurethane coated implant materials. J Mater Sci Mater Med 20:S213–S221CrossRefGoogle Scholar
  13. Bĕhal V (2006) Mode of action of microbial bioactive metabolites. Folia Microbiol 51:359–369CrossRefGoogle Scholar
  14. Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Anton Leeuw Int J G 85:1–8CrossRefGoogle Scholar
  15. Billingsley KA, Backus SM, Ward OP (1999) Effect of surfactant solubilization on biodegradation of polychlorinated biphenyl congeners by Pseudomonas LB400. Appl Microbiol Biotechnol 52:255–260CrossRefGoogle Scholar
  16. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782CrossRefGoogle Scholar
  17. Bordoloi NK, Konwar BK (2008) Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloids Surf B Biointerfaces 63:73–82CrossRefGoogle Scholar
  18. Bordoloi NK, Konwar BK (2009) Bacterial biosurfactants in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazardous Materials 170:495–505CrossRefGoogle Scholar
  19. Bouffioux O, Berquand A, Eeman M, Paquot M, Dufrêne YF, Brasseur R, Deleu M (2007) Molecular organization of surfactin-phospholipid monolayers: effect of phospholipid chain length and polar head. Biochim Biophys Acta Biomembr 1768:1758–1768CrossRefGoogle Scholar
  20. Brasseur R, Braun N, El Kirat K, Deleu M, Mingeot-Leclercq MP, Dufrêne YF (2007) The biologically important surfactin lipopeptide induces nanoripples in supported lipid bilayers. Langmuir 23:9769–9772CrossRefGoogle Scholar
  21. Byeon SE, Lee YG, Kim BH, Shen T, Lee SY, Park HJ, Park SC, Rhee MH, Cho JY (2008) Surfactin blocks NO production in lipopolysaccharide-activated macrophages by inhibiting NF-κB activation. J Microbiol Biotechnol 18:1984–1989Google Scholar
  22. Cabrera-Valladares N, Richardson AP, Olvera C, Trevino LG, Deziel E, Lepine F, Soberon-Chavez G (2006) Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biot 73:187–194CrossRefGoogle Scholar
  23. Çaglar E, Kargul B, Tanboga I (2005) Bacteriotherapy and probiotics’ role on oral health. Oral Dis 11:131–137Google Scholar
  24. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7:262–266CrossRefGoogle Scholar
  25. Cameotra SS, Singh P (2009) Synthesis of rhamnolipid biosurfactant and mode of hexadecane uptake by Pseudomonas species. Microb Cell Fact 8:16CrossRefGoogle Scholar
  26. Cao XH, Wang AH, Wang CL, Mao DZ, Lu MF, Cui YQ, Jiao RZ (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem Biol Interact 183:357–362CrossRefGoogle Scholar
  27. Cha M, Lee N, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresource Technol 99:2192–2199CrossRefGoogle Scholar
  28. Chang WN, Liu CW, Liu HS (2009) Hydrophobic cell surface and bioflocculation behavior of Rhodococcus erythropolis. Process Biochem 44:955–962CrossRefGoogle Scholar
  29. Chen HL, Juang RS (2008) Recovery and separation of surfactin from pretreated fermentation broths by physical and chemical extraction. Biochem Eng J 38:39–46CrossRefGoogle Scholar
  30. Chen HL, Chen YS, Juang RS (2008a) Recovery of surfactin from fermentation broths by a hybrid salting-out and membrane filtration process. Sep Purif Technol 59:244–252CrossRefGoogle Scholar
  31. Chen HL, Lee YS, Wei YH, Juang RS (2008b) Purification of surfactin in pretreated fermentation broths by adsorptive removal of impurities. Biochem Eng J 40:452–459CrossRefGoogle Scholar
  32. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37CrossRefGoogle Scholar
  33. Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp. nov. A new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500Google Scholar
  34. Colores GM, Macur RE, Ward DM, Inskeep WPInskeep WP (2000) Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil. Appl Environ Microbiol 66:2959–2964CrossRefGoogle Scholar
  35. Das P, Mukherjee S, Sen R (2008a) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684CrossRefGoogle Scholar
  36. Das P, Mukherjee S, Sen R (2008b) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234CrossRefGoogle Scholar
  37. Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:4887–4890CrossRefGoogle Scholar
  38. Dastgheib SMM, Amoozegar MA, Elahi E, Asad A, Banat IM (2008) Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery. Biotechnol Lett 30:263–270CrossRefGoogle Scholar
  39. Debode J, De Maeyer K, Perneel M, Pannecoucque J, De Backer G, Höfte M (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103:1184–1196CrossRefGoogle Scholar
  40. Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679CrossRefGoogle Scholar
  41. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64Google Scholar
  42. Dimitrov K, Gancel F, Montastruc L, Nikov I (2008) Liquid membrane extraction of bio-active amphiphilic substances: recovery of surfactin. Biochem Eng J 42:248–253CrossRefGoogle Scholar
  43. Eeman M, Francius G, Dufrêne YF, Nott K, Paquot M, Deleu M (2009) Effect of cholesterol and fatty acids on the molecular interactions of fengycin with stratum corneum mimicking lipid monolayers. Langmuir 25:3029–3039CrossRefGoogle Scholar
  44. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299Google Scholar
  45. Francius G, Dufour S, Deleu M, Paquot M, Mingeot-Leclercq MP, Dufrêne YF (2008) Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Biochim Biophys Acta 1778:2058–2068CrossRefGoogle Scholar
  46. Franzetti A, Di Gennaro P, Bevilacqua A, Papacchini M, Bestetti G (2006) Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere 62:1474–1480CrossRefGoogle Scholar
  47. Franzetti A, Bestetti G, Caredda P, La Colla P, Tamburini E (2008a) Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol Ecol 63:238–248CrossRefGoogle Scholar
  48. Franzetti A, Di Gennaro P, Bestetti G, Lasagni A, Pitea D, Collina E (2008b) Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation. J Hazard Mater 152:1309–1316CrossRefGoogle Scholar
  49. Franzetti A, Caredda P, Ruggeri C, La Colla P, Tamburini E, Papacchini M, Bestetti G (2009a) Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 75:810–807CrossRefGoogle Scholar
  50. Franzetti A, Caredda P, La Colla P, Pintus M, Tamburini E, Papacchini M, Bestetti G (2009b) Cultural factor affecting biosurfactant production by Gordonia sp. BS29. Int Biodeterior Biodegrad 63:943–947CrossRefGoogle Scholar
  51. Franzetti A, Tamburini E, Banat IM (2010) Application of biological surface active compounds in remediation technologies. In: Sen R (ed) Biosurfactants, ‘Advances in experimental medicine and biology’, vol 672. Springer, Berlin, pp 121–134Google Scholar
  52. Glazyrina J, Junne S, Thiesen P, Lunkenheumer K, Goetz P (2008) In situ removal and purification of biosurfactants by automated surface enrichment. Appl Microbiol Biotechnol 81:23–31CrossRefGoogle Scholar
  53. Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90:199–210CrossRefGoogle Scholar
  54. Grover M, Nain L, Singh SB, Saxena AK (2010) Molecular and biochemical approaches for characterization of antifungal trait of a potent biocontrol agent Bacillus subtilis RP24. Curr Microbiol 60:99–106CrossRefGoogle Scholar
  55. Gudiña EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B Biointerfaces 76:298–304CrossRefGoogle Scholar
  56. Gupta V, Garg R (2009) Probiotics. Indian J Med Microbiol 27:202–209CrossRefGoogle Scholar
  57. Haddadin MSY, Abou Arqoub AA, Abu Reesh I, Haddadin J (2009) Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energy Convers Manag 50:983–990CrossRefGoogle Scholar
  58. Han Y, Huang X, Cao M, Wang Y (2008) Micellization of surfactin and its effect on the aggregate conformation of amyloid β(1-40). J Phys Chem B 112:15195–15201CrossRefGoogle Scholar
  59. Harriott MM, Noverr MC (2009) Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 53:3914–3922CrossRefGoogle Scholar
  60. Hatakka K, Ahola AJ, Yli-Knuuttila H, Richardson M, Poussa T, Meurman JK (2007) Probiotics reduce the prevalence of oral Candida in the elderly—a randomized controlled trial. J Dent Res 86:125–130CrossRefGoogle Scholar
  61. Hawthorn LA, Reid G (1990) Exclusion of uropathogen adhesion to polymer surfaces by Lactobacillus acidophilus. J Biomed Mater Res 24:39–46CrossRefGoogle Scholar
  62. Hirata Y, Ryu M, Oda Y, Igarashi K, Nagatsuka A, Furuta T, Sugiura M (2009) Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants. J Biosci Bioeng 108:142–146CrossRefGoogle Scholar
  63. Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835CrossRefGoogle Scholar
  64. Hsueh YH, Somers EB, Lereclus D, Ghelardi E, Wong ACL (2007) Biosurfactant production and surface translocation are regulated by PlcR in Bacillus cereus ATCC 14579 under low-nutrient conditions. Appl Environ Microbiol 73:7225–7231CrossRefGoogle Scholar
  65. Huang X, Lu Z, Zhao H, Bie X, Lü FX, Yang S (2006) Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastle disease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther 12:373–377CrossRefGoogle Scholar
  66. Huang X, Lu Z, Bie X, Lü F, Zhao H, Yang S (2007) Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl Microbiol Biotechnol 74:454–461CrossRefGoogle Scholar
  67. Igarashi S, Hattori Y, Maitani Y (2006) Biosurfactant MEL-A enhances cellular association and gene transfection by cationic liposome. J Control Release 112:362–368CrossRefGoogle Scholar
  68. Imura T, Ito S, Azumi R, Yanagishita H, Sakai H, Abe M, Kitamoto D (2007) Monolayers assembled from a glycolipid biosurfactant from Pseudozyma (Candida) antarctica serve as a high-affinity ligand system for immunoglobulin G and M. Biotechnol Lett 29:865–870CrossRefGoogle Scholar
  69. Imura T, Masuda Y, Ito S, Worakitkanchanakul W, Morita T, Fukuoka T, Sakai H, Abe M, Kitamoto D (2008) Packing density of glycolipid biosurfactant monolayers give a significant effect on their binding affinity toward immunoglobulin G. J Oleo Sci 57:415–422Google Scholar
  70. Ito S, Imura T, Fukuoka T, Morita T, Sakai H, Abe M, Kitamoto D (2007) Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance. Colloids Surf B Bionterfaces 58:165–171CrossRefGoogle Scholar
  71. Joseph PJ, Joseph A (2009) Microbial enhanced separation of oil from a petroleum refinery sludge. J Hazard Mater 161:522–525CrossRefGoogle Scholar
  72. Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–199CrossRefGoogle Scholar
  73. Kaczorek E, Chrzanowski L, Pijanowska A, Oluanowski A (2008) Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: Rhamnolipids and saponins. Bioresource Technol 99:4285–4291CrossRefGoogle Scholar
  74. Kalmokoff ML, Austin JW, Wan XD, Sanders G, Banerjee S, Farber JM (2001) Adsoption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. J Appl Microbiol 91:725–734CrossRefGoogle Scholar
  75. Khardori N, Yassien MJ (1995) Biofilms in device-related infections. J Ind Microbiol 15:141–147CrossRefGoogle Scholar
  76. Kim K, Yoo D, Kim Y, Lee B, Shin D, Kim E-K (2002) Characteristics sophorolipid as an antimicrobial agent. J Microbiol Biotechnol 12:235–241Google Scholar
  77. Kim H, Ryu JH, Beuchat LR (2006) Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl Environ Microbiol 72:5846–5856CrossRefGoogle Scholar
  78. Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96CrossRefGoogle Scholar
  79. Kitamoto D, Morita T, Fukuoka T, Konishi M, Imura T (2009) Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr Opin Colloid Interface Sci 14:315–328CrossRefGoogle Scholar
  80. Kõll P, Mändar R, Marcotte H, Leibur E, Mikelsaar M, Hammarström L (2008) Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol 23:139–147CrossRefGoogle Scholar
  81. Konishi M, Imura T, Fukuoka T, Morita T, Kitamoto D (2007a) A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnol Lett 29:473–480CrossRefGoogle Scholar
  82. Konishi M, Morita T, Fukuoha T, Imura T, Kakugawa K, Kitamoto D (2007b) Production of different types of mannosylerythritol lipids as biosurfactant by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl Microbiol Biotechnol 75:521–531CrossRefGoogle Scholar
  83. Kronemberger FD, Anna L, Fernandes A, de Menezes RR, Borges CP, Freire DMG (2008) Oxygen-controlled biosurfactant production in a bench scale bioreactor. Appl Biochem Biotechnol 147:33–45CrossRefGoogle Scholar
  84. Kulakovskaya T, Shashkov A, Kulakovskaya E, Golubev W, Zinin A, Tsvetkov Y, Grachev A, Nifantiev N (2009) Extracellular cellobiose lipid from yeast and their analogues: structures and fungicidal activities. J Oleo Sci 58:133–140Google Scholar
  85. Kulakovskaya TV, Golubev WI, Tomashevskaya MA, Kulakovskaya EV, Shashkov AS, Grachev AA, Chizhov AS, Nifantiev NE (2010) Production of antifungal cellobiose lipids by Trichosporon porosum. Mycopathologia 169:117–123CrossRefGoogle Scholar
  86. Kumar M, Leon V, Materano ADS, Ilzins OA, Luis L (2008) Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol 24:1047–1057CrossRefGoogle Scholar
  87. Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21:449–465CrossRefGoogle Scholar
  88. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633CrossRefGoogle Scholar
  89. Maitani Y, Yano S, Hattori Y, Furuhata M, Hayashi K (2006) Liposome vector containing biosurfactant-complexed DNA as herpes simplex virus thymidine kinase gene delivery system. J Liposome Res 16:359–372CrossRefGoogle Scholar
  90. Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biot 58:428–434CrossRefGoogle Scholar
  91. Martinotti MG, Rivardo F Allegrone G, Ceri H, Turner R (2009) Biosurfactant composition produced by a new Bacillus licheniformis strain, uses and products thereof. International patent PCT/IB2009/055334 25 NovemberGoogle Scholar
  92. McCann MT, Gilmore BF, Gorman SP (2008) Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J Pharm Pharmacol 60:1551–1571CrossRefGoogle Scholar
  93. Merk K, Borelli C, Korting HC (2005) Lactobacilli—bacteria–host interactions with special regard to the urogenital tract. Int J Med Microbiol 295:9–18CrossRefGoogle Scholar
  94. Meurman JH (2005) Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 113:188–196CrossRefGoogle Scholar
  95. Meurman JH, Stamatova I (2007) Probiotics: contributions to oral health. Oral Dis 13:443–445CrossRefGoogle Scholar
  96. Meylheuc T, Methivier C, Renault M, Herry JM, Pradier CM, Bellon-Fontaine MN (2006a) Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes. Colloids Surf B Biointerfaces 52:128–137CrossRefGoogle Scholar
  97. Meylheuc T, Renault M, Bellon-Fontaine MN (2006b) Adsorption of a biosurfactant on surfaces to enhance the disinfection of surfaces contaminated with Listeria monocytogenes. Int J Food Microbiol 109:71–78CrossRefGoogle Scholar
  98. Miller RM, Zhang Y (1997) Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons, bioremediation protocols. Humana Press, New Jersey, pp 59–66Google Scholar
  99. Mimee B, Labbé C, Pelletier R, Bélanger RR (2005) Antifungal activity of flocculosin, a novel glycolipid isolated from Pseudozyma flocculosa. Antimicrob Agents Chemother 49:1597–1599CrossRefGoogle Scholar
  100. Mimee B, Pelletier R, Bélanger RR (2009) In vitro antibacterial activity and antifungal mode of action of flocculosin, a membrane-active cellobiose lipid. J Appl Microbiol 107:989–996CrossRefGoogle Scholar
  101. Mireles JR II, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854CrossRefGoogle Scholar
  102. Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794CrossRefGoogle Scholar
  103. Mohammadipour M, Mousivand M, Salehi Jouzani G, Abbasalizadeh S (2009) Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Can J Microbiol 55:395–404CrossRefGoogle Scholar
  104. Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101:1–8CrossRefGoogle Scholar
  105. Morita T, Kitagawa M, Suzuki M, Yamamoto S, Sogabe A, Yanagidani S, Imura T, Fukuoka T, Kitamoto D (2009) A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: the recovery effect of MEL-A on the SDS-damaged human skin cells. J Oleo Sci 58:639–642Google Scholar
  106. Mukherjee AK (2007) Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis in laundry detergent formulations. Lett Appl Microbiol 45:330–335CrossRefGoogle Scholar
  107. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515CrossRefGoogle Scholar
  108. Mulligan CN (2009) Recent advances in the environmental applications of biosurfactants. Curr Opin Colloid Interface Sci 14:372–378CrossRefGoogle Scholar
  109. Mutalik SR, Vaidya BK, Joshi RM, Dsai KM, Nene SN (2008) Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol 99:7875–7880CrossRefGoogle Scholar
  110. Nakanishi M, Inoh Y, Kitamoto D, Furuno T (2009) Nano vectors with a biosurfactant for gene transfection and drug delivery. J Drug Delivery Sci Technol 19:165–169Google Scholar
  111. Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics: production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 43:267–280Google Scholar
  112. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166Google Scholar
  113. Neu T, Hartner T, Poralla K (1990) Surface active properties of viscosin: a peptidolipid antibiotic. Appl Microbiol Biotechnol 32:518–520Google Scholar
  114. Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259CrossRefGoogle Scholar
  115. Nitschke M, Araújo LV, Costa SG, Pires RC, Zeraik AE, Fernandes AC, Freire DM, Contiero J (2009a) Surfactin reduces the adhesion of food-borne pathogenic bacteria to solid surfaces. Lett Appl Microbiol 49:241–247CrossRefGoogle Scholar
  116. Nitschke M, Costa SG, Contiero J (2009b) Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl Biochem Biotechnol 160:2066–2074. doi:10.1007/s12010-009-8707-8 CrossRefGoogle Scholar
  117. Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508CrossRefGoogle Scholar
  118. Onaizi SA, He L, Middelberg APJ (2009) Rapid screening of surfactant and biosurfactant surface cleaning performance. Colloid Surf B 72:68–74CrossRefGoogle Scholar
  119. Ortiz A, Teruel JA, Espuny MJ, Marqués A, Manresa Á, Aranda FJ (2008) Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim Biophys Acta 1778:2806–2813CrossRefGoogle Scholar
  120. Ortiz A, Teruel JA, Espuny MJ, Marqués A, Manresa Á, Arand FJ (2009) Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes. Chem Phys Lipids 158:46–53CrossRefGoogle Scholar
  121. Pal MP, Vaidya BK, Desai KM, Joshi RM, Nene SN, Kulkarni BD (2009) Media optimization for biosurfactant production by Rhodococcus erythropolis MTCC 2794: artificial intelligence versus a statistical approach. J Ind Microbiol Biotech 36:747–756CrossRefGoogle Scholar
  122. Palanisamy P (2008) Biosurfactant mediated synthesis of NiO nanorods. Mat Lett 62:743–746CrossRefGoogle Scholar
  123. Palanisamy P, Raichur AM (2009) Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater Sci Eng C Biomim Supramol Syst 29:199–204Google Scholar
  124. Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interface Sci 138:24–58CrossRefGoogle Scholar
  125. Park SY, Kim Y (2009) Surfactin inhibits immunostimulatory function of macrophages through blocking NK-κB, MAPK and Akt pathway. Int Immunopharmacol 9:886–893CrossRefGoogle Scholar
  126. Peng F, Liu Z, Wang L, Shao Z (2007) An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J Appl Microbiol 102:1603–1611CrossRefGoogle Scholar
  127. Perfumo A, Smyth TJP, Marchant R, Banat IM (2010a) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1501–1512CrossRefGoogle Scholar
  128. Perfumo A, Rancich I, Banat IM (2010b) Possibilities and challenges for biosurfactants use in petroleum industry, vol 672. In: Sen R (ed) Biosurfactants’ advances in experimental medicine and biology. Springer, Berlin, pp 135–157Google Scholar
  129. Pissuwan D, Niidome T, Cortie MB (2009) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release (in press)Google Scholar
  130. Pornsunthorntawee O, Arttaweeporn N, Paisanjit S, Somboonthanate P, Abe M, Rujiravanit R, Chavadej S (2008) Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochem Eng J 42:172–179CrossRefGoogle Scholar
  131. Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterisation of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115:491–503Google Scholar
  132. Rasmussen TB, Givskov M (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161CrossRefGoogle Scholar
  133. Raza ZA, Rehman A, Khan MS, Khalid ZM (2007) Improved production of biosurfactant by Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. Biodegradation 18:115–121CrossRefGoogle Scholar
  134. Raza ZA, Khalid ZM, Banat IM (2009) Characterization of rhamnolipids produced by a Pseudomonas aeruginosa mutant strain grown on waste oils. J Environ Sci Health Part A—Toxic/Hazard Substances Environ Eng 44:1367–1373Google Scholar
  135. Reddy AS, Chen CY, Chen CC, Jean JS, Fan CW, Chen HR, Wang JC, Nimje VR (2009) Synthesis of gold nanoparticles via an environmentally benign route using a biosurfactant. J Nanosci Nanotechnol 9:6693–6699CrossRefGoogle Scholar
  136. Reid G, Burton J (2002) Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect 4:319–324CrossRefGoogle Scholar
  137. Reid G, Bruce A, Smeianov V (1998) The role of Lactobacilli in preventing urogenital and intestinal infections. Int Dairy J 8:555–562CrossRefGoogle Scholar
  138. Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B (2001) Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol 30:49–52CrossRefGoogle Scholar
  139. Remichkova M, Galabova D, Roeva I, Karpenko E, Shulga A, Galabov AS (2008) Anti-herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate. Z Naturforsch C 63:75–81Google Scholar
  140. Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553CrossRefGoogle Scholar
  141. Rivardo F, Martinotti MG, Raymond Joseph Turner RJ, Ceri H (2010) The activity of silver against Escherichia coli biofilm is increased by a lipopeptide biosurfactant. Can J Microbiol 56(3):272–278. doi:10.1139/W10-007 CrossRefGoogle Scholar
  142. Rocha MV, Souza MCM, Benedicto SC, Bezerra MS, Macedo GR, Pinto GAS, Goncalves LRB (2007) Production of biosurfactant by Pseudomonas aeruginosa grown on cashew apple juice. Appl Biochem Biotechnol 137–140:185–194CrossRefGoogle Scholar
  143. Rodrigues L, van der Mei HC, Teixeira J, Oliveira R (2004) Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol 70:4408–4410CrossRefGoogle Scholar
  144. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006a) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618CrossRefGoogle Scholar
  145. Rodrigues L, van der Mei H, Banat IM, Teixeira J, Oliveira R (2006b) Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol Med Microbiol 46:107–112CrossRefGoogle Scholar
  146. Rodrigues LR, Banat IM, van der Mei HC, Teixeira JA, Oliveira R, Oliveira R (2006c) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol 100:470–480CrossRefGoogle Scholar
  147. Rodrigues LR, Teixeira JA, van der Mei HC, Oliveira R (2006d) Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B Biointerfaces 49:79–86CrossRefGoogle Scholar
  148. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2007) Strategies for the prevention of microbial biofilm formation on silicone rubber voice prostheses. J Biomed Mater Res B Appl Biomater 81:358–370Google Scholar
  149. Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316CrossRefGoogle Scholar
  150. Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162CrossRefGoogle Scholar
  151. Rosenberg E, Rubinovitz C, Legmann R, Ron EZ (1987) Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 54:323–326Google Scholar
  152. Ruggeri C, Franzetti A, Bestetti G, Caredda P, La Colla P, Pintus M, Sergi S, Tamburini E (2009) Isolation and characterisation of surface active compound-producing bacteria from hydrocarbon-contaminated environments by a high-throughput screening procedure. Int Biodeterior Biodegrad 63:936–942CrossRefGoogle Scholar
  153. Saini HS, Barragán-Huerta BE, Lebrón-Paler A, Pemberton JE, Vázquez RR, Burns AM, Marron MT, Seliga CJ, Gunatilaka AA, Maier RM (2008) Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties. J Nat Prod 71:1011–1015CrossRefGoogle Scholar
  154. Sánchez M, Aranda FJ, Teruel JA, Ortiz A (2009) Interaction of a bacterial dirhamnolipid with phosphatidylcholine membranes: a biophysical study. Chem Phys Lipids 161:51–55CrossRefGoogle Scholar
  155. Sánchez M, Aranda FJ, Teruel JA, Espuny MJ, Marqués A, Manresa Á, Ortiz A (2010) Permeabilization of biological and artificial membranes by a bacterial dirhamnolipid produced by Pseudomonas aeruginosa. J Colloid Interface Sci 341:240–247CrossRefGoogle Scholar
  156. Selvam R, Maheswari P, Kavitha P, Ravichandran M, Sas B, Ramchand CN (2009) Effect of Bacillus subtilis PB6, a natural probiotic on colon mucosal inflammation and plasma cytokines levels in inflammatory bowel disease. Indian J Biochem Biophys 46:79–85Google Scholar
  157. Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energ Combust 34:714–724CrossRefGoogle Scholar
  158. Seydlová G, Svobodová J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3:123–133CrossRefGoogle Scholar
  159. Shah V, Doncel GF, Seyoum T, Eaton KM, Zalenskaya I, Hagver R, Azim A, Gross R (2005) Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob Agents Chemother 49:4093–4100CrossRefGoogle Scholar
  160. Shreve GS, Inguva S, Gunnan S (1995) Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Mol Mar Biol Biotechnol 4:331–337Google Scholar
  161. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146CrossRefGoogle Scholar
  162. Singh A, van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121CrossRefGoogle Scholar
  163. Sivapathasekaran C, Mukherjee S, Samanta R, Sen R (2009) High-performance liquid chromatography purification of biosurfactant isoforms produced by a marine bacterium. Anal Bioanal Chem 395:845–854CrossRefGoogle Scholar
  164. Sivapathasekaran C, Mukherjee S, Ray A, Gupta A, Sen R (2010) Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant. Bioresour Technol 101:2884–2887CrossRefGoogle Scholar
  165. Smyth TJP, Perfumo A, Marchant R, Banat IM (2010a) Isolation and analysis of low molecular weight microbial glycolipids. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3705–3723CrossRefGoogle Scholar
  166. Smyth TJP, Perfumo A, McClean S, Marchant R, Banat IM (2010b) Isolation and analysis of lipopeptides and high molecular weight biosurfactants. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3689–3704Google Scholar
  167. Smyth TJ, Perfumo A, Marchant R, Banat IM, Chen M, Thomas RK, Penfold J, Stevenson PS, Parry NJ (2010c) Directed microbial biosynthesis of deuterated biosurfactants and potential future application to other bioactive molecules. Appl Microbiol Biotechnol (in press)Google Scholar
  168. Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem 57:4287–4292CrossRefGoogle Scholar
  169. Sobrinho HBS, Rufino RD, Luna JM, Salgueiro AA, Campos-Takaki GM, Leite LFC, Sarubbo LA (2008) Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem 43:912–917CrossRefGoogle Scholar
  170. Sotirova AV, Spasova DI, Galabova DN, Karpenko E, Shulga A (2008) Rhamnolipid–biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr Microbiol 56:639–644CrossRefGoogle Scholar
  171. Soudmand-Asli A, Ayatollahi SS, Mohabatkar H, Zareie M, Shariatpanahi SF (2007) The in situ microbial enhanced oil recovery in fractured porous media. J Pet Sci Eng 58:161–172CrossRefGoogle Scholar
  172. Stepanovic S, Cirkovic I, Ranin L, Svabic-Vlahovic M (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 38:428–432CrossRefGoogle Scholar
  173. Suthar H, Hingurao K, Desai A, Nerurkar A (2008) Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. J Microbiol Methods 75:225–230CrossRefGoogle Scholar
  174. Tanaka Y, Tojo T, Uchida K, Uno J, Uchida Y, Shida O (1997) Method of producing iturin A and antifungal agent for profound mycosis. Biotechnol Adv 15:234–235Google Scholar
  175. Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66:525–533CrossRefGoogle Scholar
  176. Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2007) Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Lett Appl Microbiol 45:686–691CrossRefGoogle Scholar
  177. Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24:917–925CrossRefGoogle Scholar
  178. Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl Environ Microbiol 60:258–263Google Scholar
  179. Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007) Role of cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742CrossRefGoogle Scholar
  180. Tran H, Kruijt M, Raaijmakers JM (2008) Diversity and activity of biosurfactant-producing Pseudomonas in the rhizosphere of black pepper in Vietnam. J Appl Microbiol 104:839–851CrossRefGoogle Scholar
  181. Ueno Y, Hirashima N, Inoh Y, Furuno T, Nakanishi M (2007a) Characterization of biosurfactant-containing liposomes and their efficiency for gene transfection. Biol Pharm Bull 30:169–172CrossRefGoogle Scholar
  182. Ueno Y, Inoh Y, Furuno T, Hirashima N, Kitamoto D, Nakanishi M (2007b) NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection. J Control Release 123:247–253CrossRefGoogle Scholar
  183. Valle J, Da Re S, Henry N, Fontaine T, Balestrino D, Latour-Lambert P, Ghigo JM (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci U S A 103:12558–12563CrossRefGoogle Scholar
  184. Van Bogaert INA, Saerens K, De Muynck C, Develter D, Wim S, Vandamme EJ (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotechnol 76:23–34CrossRefGoogle Scholar
  185. Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620CrossRefGoogle Scholar
  186. Van Hoogmoed CG, Van der Mei HC, Busscher HJ (2004) The influence of biosurfactants released by S. mitis BMS on the adhesion of pioneer strains and cariogenic bacteria. Biofouling 20:261–267CrossRefGoogle Scholar
  187. Van Hoogmoed CG, Dijkstra RJB, van der Mei HC, Busscher HJ (2006) Influence of biosurfactant on interactive forces between mutans streptococci and enamel measured by atomic force microscopy. J Dent Res 85:54–58CrossRefGoogle Scholar
  188. Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32:178–193CrossRefGoogle Scholar
  189. Vater J, Kablitz B, Wilde C, Frank P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization time of flight mass spectrometry of lipopeptide biosurin whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210–6219CrossRefGoogle Scholar
  190. Velmurugan N, Choi MS, Han SS, Lee YS (2009) Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: in vitro and in vivo experiments. J Microbiol 47:385–392CrossRefGoogle Scholar
  191. Velraeds MCM, van der Mei HC, Reid G, Busscher HJ (1996) Physicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Colloids Surf B 8:51–61CrossRefGoogle Scholar
  192. Velraeds MM, van de Belt-Gritter B, Busscher HJ, Reid G, Van der Mei HC (2000) Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli—a teleologic approach. World J Urol 18:422–426CrossRefGoogle Scholar
  193. Vinh DC, Embil JM (2005) Device-related infections: a review. J Long Term Eff Med Implants 15:467–488CrossRefGoogle Scholar
  194. Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417CrossRefGoogle Scholar
  195. Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297CrossRefGoogle Scholar
  196. von Eiff C, Kohnen W, Becker K, Jansen B (2005) Modern strategies in the prevention of implant-associated infections. Int J Artif Organs 28:1146–1156Google Scholar
  197. Walencka E, Różalska S, Sadowska B, Różalska B (2008) The influence of Lactobacillus acidophilus derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol 53:61–66CrossRefGoogle Scholar
  198. Wang SL, Mulligan CN (2009) Arsenic mobilization from mine tailings in the presence of a biosurfactant. Appl Geochem 24:928–935CrossRefGoogle Scholar
  199. Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA III, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853CrossRefGoogle Scholar
  200. Wang J, Ma T, Zhao L, Lv J, Li G, Zhang H, Zhao B, Liang F, Liu R (2008) Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery. J Ind Microbiol Biotechnol 35:619–628CrossRefGoogle Scholar
  201. Wen J, Stacey SP, McLaughlin MJ, Kirby JK (2009) Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biol Biochem 41:2214–2221CrossRefGoogle Scholar
  202. Xu T, Chen C, Liu C, Zhang S, Wu Y, Zhang P (2009) A novel way to enhance the oil recovery ratio by Streptococcus sp. BT-003. J Basic Microbiol 49:477–481CrossRefGoogle Scholar
  203. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS 50. Appl Environ Microbiol 61:1706–1713Google Scholar
  204. Zaragoza A, Aranda FJ, Espuny MJ, Teruel JA, Marqués A, Manresa Á, Ortiz A (2009) A mechanism of membrane permeabilization by a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp. Langmuir 25:7892–7898CrossRefGoogle Scholar
  205. Zheng YG, Chen XL, Shen YC (2008) Commodity chemicals derived from glycerol, an important biorefinery feedstock. Chem Rev 108:5253–5277CrossRefGoogle Scholar
  206. Zhong H, Zeng GM, Yuan XZ, Fu HY, Huang GH, Ren FY (2007) Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biot 77:447–455CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ibrahim M. Banat
    • 1
  • Andrea Franzetti
    • 2
  • Isabella Gandolfi
    • 2
  • Giuseppina Bestetti
    • 2
  • Maria G. Martinotti
    • 3
  • Letizia Fracchia
    • 3
  • Thomas J. Smyth
    • 1
  • Roger Marchant
    • 1
  1. 1.School of Biomedical SciencesUniversity of UlsterColeraineUK
  2. 2.Department of Environmental SciencesUniversity of Milano-BicoccaMilanoItaly
  3. 3.DiSCAFF, Università del Piemonte OrientaleNovaraItaly

Personalised recommendations