Advertisement

Applied Microbiology and Biotechnology

, Volume 87, Issue 4, pp 1327–1334 | Cite as

Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae

  • Chikara Ohto
  • Masayoshi Muramatsu
  • Shusei Obata
  • Eiji Sakuradani
  • Sakayu Shimizu
Biotechnological Products and Process Engineering

Abstract

An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

Keywords

Geranylgeraniol Mevalonate pathway Hydroxymethylglutaryl-CoA reductase Prenyl diphosphate synthase Yeast recombinant 

Notes

Acknowledgement

We thank Ms. Chiharu Mori, Ms. Yoshie Tsukahara, Ms. Kazuyo Suzuki, and Ms. Kumi Terada for their technical assistance.

References

  1. Barkovich R, Liao JC (2001) Metabolic engineering of isoprenoids. Metab Eng 3:27–39CrossRefGoogle Scholar
  2. Benford HL, Frith JC, Auriola S, Mönkkönen J, Rogers MJ (1999) Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs. Mol Pharmacol 56:131–140Google Scholar
  3. Bergstrom JD, Kurtz MM, Rew DJ, Amend AM, Karkas JD, Bostedor RG, Bansal VS, Dufresne C, Vanmiddlesworth FL, Hensens OD, Liesch JM, Zink DL, Wilson KE, Onishi J, Milligan JA, Bills G, Kaplan L, Nallin-Omstead M, Jenkins RG, Huang L, Meinz MS, Quinn L, Burg RW, Kong YL, Mochales S, Mojena M, Martin I, Pelaez F, Diez MT, Alberts AW (1993) Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci USA 90:80–84CrossRefGoogle Scholar
  4. Brodelius M, Lundgren A, Mercke P, Brodelius PE (2002) Fusion of farnesyl diphosphate synthase and epi-aristolochene synthase, a sesquiterpene cyclase involved in capsidiol biosynthesis in Nicotiana tabacum. Eur J Biochem 269:3570–3577CrossRefGoogle Scholar
  5. Carter OA, Peters RJ, Croteau R (2003) Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry 64:425–433CrossRefGoogle Scholar
  6. Chambon C, Ladeveze V, Oulmouden A, Servouse M, Karst F (1990) Isolation and properties of yeast mutants affected in farnesyl diphosphate synthetase. Curr Genet 18:41–46CrossRefGoogle Scholar
  7. Chambon C, Ladeveze V, Servouse M, Blanchard L, Javelot C, Vladescu B, Karst F (1991) Sterol pathway in yeast. Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase. Lipids 26:633–636CrossRefGoogle Scholar
  8. Donald KA, Hampton RY, Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 63:3341–3344Google Scholar
  9. Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242CrossRefGoogle Scholar
  10. Hyatt JA, Kottas GS, Effler J (2002) Development of synthetic routes to d,l-α-tocopherol (vitamin E) from biological produced geranylgeraniol. Org Process Res Dev 6:782–787CrossRefGoogle Scholar
  11. Jiang Y, Proteau P, Poulter D, Ferro-Novick S (1995) BTS1 encodes a geranylgeranyl diphosphate synthase in Saccharomyces cerevisiae. J Biol Chem 270:21793–21799CrossRefGoogle Scholar
  12. Kawaide H (2006) Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci Biotechnol Biochem 70:583–590CrossRefGoogle Scholar
  13. Kim SW, Keasling JD (2001) Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol Bioeng 72:408–415CrossRefGoogle Scholar
  14. Muramatsu M, Ohto C, Obata S, Sakuradani E, Shimizu S (2008a) Various oils and detergents enhance the microbial production of farnesol and related prenyl alcohols. J Biosci Bioeng 106:263–267CrossRefGoogle Scholar
  15. Muramatsu M, Ohto C, Obata S, Sakuradani E, Shimizu S (2008b) Accumulation of prenyl alcohols by terpenoid biosynthesis inhibitors in various microorganisms. Appl Microbiol Biotechnol 80:589–595CrossRefGoogle Scholar
  16. Negishi E, Liou SY, Xu C, Huo S (2002) A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme Q(10). Org Lett 4:261–264CrossRefGoogle Scholar
  17. Ogura K, Koyama T (1998) Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98:1263–1276CrossRefGoogle Scholar
  18. Ohto C, Nakane H, Hemmi H, Ohnuma S, Obata S, Nishino T (1998) Overexpression of an archaeal geranylgeranyl diphosphate synthase in Escherichia coli cells. Biosci Biotechnol Biochem 62:1243–1246CrossRefGoogle Scholar
  19. Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009a) Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli. Biosci Biotechnol Biochem 73:186–188CrossRefGoogle Scholar
  20. Ohto C, Muramatsu M, Obata S, Sakuradani E, Shimizu S (2009b) Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol 82:837–845CrossRefGoogle Scholar
  21. Velayos A, Eslava AP, Iturriaga EA (2000) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. FEBS J 267:5509–5519Google Scholar
  22. Yu JS, Kleckley TS, Wiemer DF (2005) Synthesis of farnesol isomers via a modified Wittig procedure. Org Lett 7:4803–4806CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Chikara Ohto
    • 1
  • Masayoshi Muramatsu
    • 1
  • Shusei Obata
    • 1
  • Eiji Sakuradani
    • 2
  • Sakayu Shimizu
    • 3
  1. 1.Bio Research Lab.Toyota Motor CorporationToyotaJapan
  2. 2.Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
  3. 3.Department of Bioscience and Biotechnology, Faculty of Bioenvironmental ScienceKyoto Gakuen UniversityKyotoJapan

Personalised recommendations