Applied Microbiology and Biotechnology

, Volume 87, Issue 2, pp 703–713 | Cite as

Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum

  • Steffen N. Lindner
  • Sandra Knebel
  • Srinivas R. Pallerla
  • Siegfried M. Schoberth
  • Volker F. Wendisch
Applied Microbial and Cell Physiology

Abstract

The Corynebacterium glutamicum gene cg2091 is encoding a polyphosphate (PolyP)/ATP-dependent glucokinase (PPGK). Previous work demonstrated the association of PPGK to PolyP granules. The deduced amino acid sequence of PPGK shows 45% sequence identity to PolyP/ATP glucomannokinase of Arthrobacter sp. strain KM and 50% sequence identity to PolyP glucokinase of Mycobacterium tuberculosis H37Rv. PPGK from C. glutamicum was purified from recombinant Escherichia coli. PolyP was highly preferred over ATP and other NTPs as substrate and with respect to the tested PolyPs differing in chain length; the protein was most active with PolyP75. Gel filtration analysis revealed that PolyP supported the formation of homodimers of PPGK and that PPGK was active as a homodimer. A ppgK deletion mutant (ΔppgK) showed slowed growth in minimal medium with maltose as sole carbon source. Moreover, in minimal medium containing 2 to 4% (w/v) glucose as carbon source, ΔppgK grew to lower final biomass concentrations than the wild type. Under phosphate starvation conditions, growth of ΔppgK was reduced, and growth of a ppgK overexpressing strain was increased as compared to wild type and empty vector control, respectively. Thus, under conditions of glucose excess, the presence of PPGK entailed a growth advantage.

Keyword

Corynebacterium Glucokinase Polyphosphate Poly P Maltose Phosphate starvation 

References

  1. Arndt A, Eikmanns BJ (2008) Regulation of carbon metabolism in Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Wymondham, pp 155–182Google Scholar
  2. Ayraud S, Janvier B, Labigne A, Ecobichon C, Burucoa C, Fauchere JL (2005) Polyphosphate kinase: a new colonization factor of Helicobacter pylori. FEMS Microbiol Lett 243:45–50CrossRefGoogle Scholar
  3. Baldwin SA, Henderson PJ (1989) Homologies between sugar transporters from eukaryotes and prokaryotes. Annu Rev Physiol 51:459–471CrossRefGoogle Scholar
  4. Brown MR, Kornberg A (2004) Inorganic polyphosphate in the origin and survival of species. Proc Natl Acad Sci USA 101:16085–16087CrossRefGoogle Scholar
  5. Brown MR, Kornberg A (2008) The long and short of it—polyphosphate, PPK and bacterial survival. Trends Biochem Sci 33:284–290CrossRefGoogle Scholar
  6. Curtis SJ, Epstein W (1975) Phosphorylation of d-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol 122:1189–1199Google Scholar
  7. Docampo R (2006) Acidocalcisomes and polyphosphate granules. In: Shively JM (ed) Inclusions in prokaryotes, vol 1. Springer, Berlin, pp 53–70CrossRefGoogle Scholar
  8. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press LLC, Boca RatonGoogle Scholar
  9. Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177:774–782Google Scholar
  10. Gourdon P, Raherimandimby M, Dominguez H, Cocaign-Bousquet M, Lindley ND (2003) Osmotic stress, glucose transport capacity and consequences for glutamate overproduction in Corynebacterium glutamicum. J Biotechnol 104:77–85CrossRefGoogle Scholar
  11. Guixe V, Merino F (2009) The ADP-dependent sugar kinase family: kinetic and evolutionary aspects. IUBMB Life 61:753–761CrossRefGoogle Scholar
  12. Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning: a practical approach, vol 1. IRL Press, Oxford, pp 109–135Google Scholar
  13. Herzenberg LA (1959) Studies on the induction of beta-galactosidase in a cryptic strain of Escherichia coli. Biochim Biophys Acta 31:525–538CrossRefGoogle Scholar
  14. Hooley P, Whitehead MP, Brown MR (2008) Eukaryote polyphosphate kinases: is the ‘Kornberg’ complex ubiquitous? Trends Biochem Sci 33:577–582CrossRefGoogle Scholar
  15. Hsieh PC, Kowalczyk TH, Phillips NF (1996a) Kinetic mechanisms of polyphosphate glucokinase from Mycobacterium tuberculosis. Biochemistry 35:9772–9781CrossRefGoogle Scholar
  16. Hsieh PC, Shenoy BC, Samols D, Phillips NF (1996b) Cloning, expression, and characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J Biol Chem 271:4909–4915CrossRefGoogle Scholar
  17. Jahid IK, Silva AJ, Benitez JA (2006) Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol 72:7043–7049CrossRefGoogle Scholar
  18. Jahreis K, Pimentel-Schmitt EF, Bruckner R, Titgemeyer F (2008) Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 32:891–907CrossRefGoogle Scholar
  19. Kim KS, Rao NN, Fraley CD, Kornberg A (2002) Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci USA 99:7675–7680CrossRefGoogle Scholar
  20. Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM (2006) Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:1099–1106CrossRefGoogle Scholar
  21. Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125CrossRefGoogle Scholar
  22. Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates, 2nd edn. Wiley, ChichesterGoogle Scholar
  23. Kundig W, Ghosh S, Roseman S (1964) Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proc Natl Acad Sci USA 52:1067–1074CrossRefGoogle Scholar
  24. Kwakman JH, Postma PW (1994) Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. J Bacteriol 176:2694–2698Google Scholar
  25. Lambert C, Weuster-Botz D, Weichenhain R, Kreutz EW, De Graaf AA, Schoberth SM (2002) Monitoring of inorganic polyphosphate dynamics in Corynebacterium glutamicum. using a novel oxygen sparger for real time 31P in vivo NMR. Acta Biotechnol 22:245CrossRefGoogle Scholar
  26. Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF (2007) NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum. Appl Environ Microbiol 73:5026–5033CrossRefGoogle Scholar
  27. Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF (2009) Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum. Appl Environ Microbiol 75:3161–3170CrossRefGoogle Scholar
  28. Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF (2010) Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol Google Scholar
  29. Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244:259–266CrossRefGoogle Scholar
  30. Moon MW, Park SY, Choi SK, Lee JK (2007) The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J Mol Microbiol Biotechnol 12:43–50CrossRefGoogle Scholar
  31. Mukai T, Kawai S, Matsukawa H, Matuo Y, Murata K (2003) Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM. Appl Environ Microbiol 69:3849–3857CrossRefGoogle Scholar
  32. Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM (2005) Formation of volutin granules in Corynebacterium glutamicum. FEMS Microbiol Lett 243:133–140CrossRefGoogle Scholar
  33. Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F (2001) Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3:423–428Google Scholar
  34. Park SY, Kim HK, Yoo SK, Oh TK, Lee JK (2000) Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol Lett 188:209–215CrossRefGoogle Scholar
  35. Pimentel-Schmitt EF, Thomae AW, Amon J, Klieber MA, Roth HM, Muller YA, Jahreis K, Burkovski A, Titgemeyer F (2007) A glucose kinase from Mycobacterium smegmatis. J Mol Microbiol Biotechnol 12:75–81CrossRefGoogle Scholar
  36. Postma PW, Lengeler JW (1985) Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269Google Scholar
  37. Rao NN, Gomez-Garcia MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647CrossRefGoogle Scholar
  38. Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH, Kornberg A (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:9636–9641CrossRefGoogle Scholar
  39. Rittmann D, Schaffer S, Wendisch VF, Sahm H (2003) Fructose-1, 6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285–292CrossRefGoogle Scholar
  40. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  41. Sakuraba H, Mitani Y, Goda S, Kawarabayasi Y, Ohshima T (2003) Cloning, expression, and characterization of the first archaeal ATP-dependent glucokinase from aerobic hyperthermophilic archaeon Aeropyrum pernix. J Biochem 133:219–224CrossRefGoogle Scholar
  42. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  43. Schäfer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73CrossRefGoogle Scholar
  44. Schröder HC, Müller WEG (1999) In: Inorganic polyphosphates: biochemistry, biology, biotechnology. Progress in molecular and subcellular biology, vol 23. Springer, Berlin, GermanyGoogle Scholar
  45. Seibold GM, Wurst M, Eikmanns BJ (2009) Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. Microbiology 155:347–358CrossRefGoogle Scholar
  46. Shimizu H, Hirasawa T (2007) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, HeidelbergGoogle Scholar
  47. Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928CrossRefGoogle Scholar
  48. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130CrossRefGoogle Scholar
  49. Szymona M, Ostrowski W (1964) Inorganic polyphosphate glucokinase of Mycobacterium phlei. Biochim Biophys Acta 85:283–295Google Scholar
  50. Szymona M, Widomski J (1974) A kinetic study on inorganic polyphosphate glucokinase from Mycobacterium tuberculosis H37RA. Physiol Chem Phys 6:393–404Google Scholar
  51. Tanaka S, Lee SO, Hamaoka K, Kato J, Takiguchi N, Nakamura K, Ohtake H, Kuroda A (2003) Strictly polyphosphate-dependent glucokinase in a polyphosphate-accumulating bacterium, Microlunatus phosphovorus. J Bacteriol 185:5654–5656CrossRefGoogle Scholar
  52. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  53. Weisser P, Kramer R, Sahm H, Sprenger GA (1995) Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol 177:3351–3354Google Scholar
  54. Wendisch VF, Bott M (2005) Phosphorus metabolism of Corynebacterium glutamicum. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press LLC, Boca Raton, pp 379–398Google Scholar
  55. Wittmann C, Becker J (2007) The l-lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, HeidelbergGoogle Scholar
  56. Zeppenfeld T, Larisch C, Lengeler JW, Jahreis K (2000) Glucose transporter mutants of Escherichia coli K-12 with changes in substrate recognition of IICB(Glc) and induction behavior of the ptsG gene. J Bacteriol 182:4443–4452CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Steffen N. Lindner
    • 1
    • 2
  • Sandra Knebel
    • 2
  • Srinivas R. Pallerla
    • 2
  • Siegfried M. Schoberth
    • 2
  • Volker F. Wendisch
    • 3
  1. 1.Institute of Molecular Microbiology and BiotechnologyWestfalian Wilhelms University MünsterMünsterGermany
  2. 2.Institut für Biotechnologie 1Forschungszentrum JülichJülichGermany
  3. 3.Faculty of BiologyBielefeld UniversityBielefeldGermany

Personalised recommendations