Applied Microbiology and Biotechnology

, Volume 87, Issue 2, pp 499–507 | Cite as

Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor

  • François Coutte
  • Didier LecouturierEmail author
  • Saliha Ait Yahia
  • Valérie Leclère
  • Max Béchet
  • Philippe Jacques
  • Pascal Dhulster
Biotechnological Products and Process Engineering


Surfactin and fengycin are lipopeptide biosurfactants produced by Bacillus subtilis. This work describes for the first time the use of bubbleless bioreactors for the production of these lipopeptides by B. subtilis ATCC 21332 with aeration by a hollow fiber membrane air–liquid contactor to prevent foam formation. Three different configurations were tested: external aeration module made from either polyethersulfone (reactor BB1) or polypropylene (reactor BB2) and a submerged module in polypropylene (reactor BB3). Bacterial growth, glucose consumption, lipopeptide production, and oxygen uptake rate were monitored during the culture in the bioreactors. For all the tested membranes, the bioreactors were of satisfactory bacterial growth and lipopeptide production. In the three configurations, surfactin production related to the culture volume was in the same range: 242, 230, and 188 mg l−1 for BB1, BB2, and BB3, respectively. Interestingly, high differences were observed for fengycin production: 47 mg l−1 for BB1, 207 mg l−1 for BB2, and 393 mg l−1 for BB3. A significant proportion of surfactin was adsorbed on the membranes and reduced the volumetric oxygen mass transfer coefficient. The degree of adsorption depended on both the material and the structure of the membrane and was higher with the submerged polypropylene membrane.


Bacillus subtilis Surfactin Fengycin Bubbleless membrane bioreactor Oxygen transfer Adsorption 



This work received financial support from the Université Lille 1 Sciences et Technologies, the Région Nord-Pas-de-Calais, the Fonds Européen pour le Développement de la Recherche, and the Ministère de l’Enseignement et de la Recherche. We thank Dr. Sylvain Thuaudet from MEDOS for his collaboration and William Everett for the English proof reading.


  1. Ahmed T, Semmens MJ (1996) Use of transverse flow hollow fibers for bubbleless membrane aeration. Water Res 30:440–446CrossRefGoogle Scholar
  2. Bonmatin JM, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity–structure relationships to design new bioactive agents. Comb Chem High T Scr 6:541–556Google Scholar
  3. Brindle K, Stephenson T (1996) The application of membrane biological reactors for the treatment of wastewaters. Biotechnol Bioeng 49:601–610CrossRefGoogle Scholar
  4. Chen AL, Juang RS (2008) Extraction of surfactin from fermentation broth with n-hexane in microporous PVDF hollow fibers: significance of membrane adsorption. J Membrane Sci 325:599–604CrossRefGoogle Scholar
  5. Cooper DG, Macdonald CR, Duff SJ, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412Google Scholar
  6. Coutte F, Leclère V, Béchet M, Guez JS, Lecouturier D, Chollet-Imbert M, Dhulster P, Jacques P (2010) Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J Appl Microb. doi: 10.1111/j.1365-2672.2010.04683.x
  7. Davis DA, Lynch HC, Varley J (1999) The production of surfactin in batch culture by Bacillus subtilis ATCC 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzyme Microb Tech 25:322–329CrossRefGoogle Scholar
  8. Davis DA, Lynch HC, Varley J (2001) The application of foaming for the recovery of surfactin from B. subtilis ATCC 21332 cultures. Enzyme Microb Tech 28:346–354CrossRefGoogle Scholar
  9. Deleu M, Razafindralambo H, Popineau Y, Jacques P, Thonart P, Paquot M (1999) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloid Surf A 152:3–10CrossRefGoogle Scholar
  10. Deleu M, Bouffioux O, Razafindralambo H, Paquot M, Hbid C, Thonart P, Jacques P, Brasseur R (2003) Interaction of surfactin with membranes: a computational approach. Langmuir 19:3377–3385CrossRefGoogle Scholar
  11. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol R 61:47–64Google Scholar
  12. Gabelman A, Hwang ST (1999) Hollow fiber membrane contactors. J Membrane Sci 159:61–106CrossRefGoogle Scholar
  13. Gancel F, Montastruc L, Liu T, Zhao L, Nikov I (2009) Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochem 44:975–978CrossRefGoogle Scholar
  14. Guez JS, Chenikher S, Cassar JP, Jacques P (2007) Setting up and modelling of overflowing fed-batch cultures of Bacillus subtilis for the production and continuous removal of lipopeptides. J Biotechnol 131:67–75CrossRefGoogle Scholar
  15. Guez JS, Müller CH, Danzé PM, Büchs J, Jacques P (2008) Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J Biotechnol 134:121–126CrossRefGoogle Scholar
  16. Hbid C, Jacques P, Razafindralambo H, Mpoyo MK, Meurice E, Paquot M, Thonart P (1996) Influence of the production of two lipopeptides, iturin A and surfactin S1, on oxygen transfer during Bacillus subtilis fermentation. Appl Biochem Biotech 57–58:571–579CrossRefGoogle Scholar
  17. Isa MHM, Coraglia DE, Frazier RA, Jauregi P (2007) Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process. J Membrane Sci 296:51–57CrossRefGoogle Scholar
  18. Ishigami Y, Osman M, Nakahara H, Sano Y, Ishiguro R, Matsumoto M (1995) Significance of beta-sheet formation for micellization and surface adsorption of surfactin. Colloid Surface B 4:341–348CrossRefGoogle Scholar
  19. Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, De Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett–Burman design. Appl Biochem Biotech 77:223–233CrossRefGoogle Scholar
  20. Khoshbin E, Westrope C, Pooboni S, Machin D, Killer H, Peek GJ, Sosnowski AW, Firmin RK (2005) Performance of polymethyl pentene oxygenators for neonatal extracorporeal membrane oxygenation: a comparison with silicone membrane oxygenators. Perfusion 20:129–134CrossRefGoogle Scholar
  21. Kosaric N (2005) Biosurfactants and their application for soil bioremediation. Food Technol Biotech 39:295–304Google Scholar
  22. Lee BS, Kim EK (2008) Lipopeptide production from Bacillus sp. GB16 using a novel oxygenation method. Enzyme Microb Tech 35:639–647CrossRefGoogle Scholar
  23. Maget-Dana R, Ptak M (1992) Interfacial properties of surfactin. J Colloid Interf Sci 153:285–291CrossRefGoogle Scholar
  24. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198CrossRefGoogle Scholar
  25. Nakano MM, Dailly YP, Zuber P, Clark DP (1997) Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J Bacteriol 179:6749–6755Google Scholar
  26. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125CrossRefGoogle Scholar
  27. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol of Bacillus subtilis. Appl Microbiol Biot 69:29–38CrossRefGoogle Scholar
  28. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090CrossRefGoogle Scholar
  29. Pankhania M, Brindle K, Stephenson T (1999) Membrane aeration bioreactors for wastewater treatment: completely mixed and plug-flow operation. Chem Eng J 73:131–136CrossRefGoogle Scholar
  30. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biot 51:553–563CrossRefGoogle Scholar
  31. Schneider M, Reymond F, Marison U, von Stockar U (1995) Bubble-free oxygenation by means of hydrophobic porous membranes. Enzyme Microb Tech 17:839–837CrossRefGoogle Scholar
  32. Shakerifard P, Gancel F, Jacques P, Faille C (2009) Effect of different Bacillus subtilis lipopeptides on surface hydrophobicity adhesion of Bacillus cereus 98/4 spores to stainless steel and Teflon. Biofouling 25:533–541CrossRefGoogle Scholar
  33. Trible LA, Briens CL, Margaritis AA (1995) Determination of the volumetric mass transfer coefficient (k(L)a) using dynamic "gas out-gas in" method: analysis of errors caused by dissolved oxygen probe. Biotechnol Bioeng 46:388–392CrossRefGoogle Scholar
  34. Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25:289–297CrossRefGoogle Scholar
  35. Wei C, Huang X, Wen X (2006) Pilot study on municipal wastewater treatment by a modified submerged membrane bioreactor. Water Sci Technol 53:103–110Google Scholar
  36. Yeh MS, Wei YH, Chang JS (2006) Bioreactor design for enhanced carrier-assisted surfactin production with Bacillus subtilis. Process Biochem 41:1799–1805CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • François Coutte
    • 1
  • Didier Lecouturier
    • 1
    Email author
  • Saliha Ait Yahia
    • 1
  • Valérie Leclère
    • 1
  • Max Béchet
    • 1
  • Philippe Jacques
    • 1
  • Pascal Dhulster
    • 1
  1. 1.ProBioGEM, Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien, Polytech’LilleUniv Lille Nord de France, USTLVilleneuve d’Ascq CedexFrance

Personalised recommendations