Applied Microbiology and Biotechnology

, Volume 86, Issue 4, pp 1027–1041 | Cite as

Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues

  • Matthias Brigulla
  • Wilfried WackernagelEmail author


Horizontal gene transfer (HGT) is part of prokaryotic life style and a major factor in evolution. In principle, any combinations of genetic information can be explored via HGT for effects on prokaryotic fitness. HGT mechanisms including transformation, conjugation, transduction, and variations of these plus the role of mobile genetic elements are summarized with emphasis on their potential to translocate foreign DNA. Complementarily, we discuss how foreign DNA can be integrated in recipient cells through homologous recombination (HR), illegitimate recombination (IR), and combinations of both, site-specific recombination, and the reconstitution of plasmids. Integration of foreign DNA by IR is very low, and combinations of IR with HR provide intermediate levels compared to the high frequency of homologous integration. A survey of studies on potential HGT from various transgenic plants indicates very rare transfer of foreign DNA. At the same time, in prokaryotic habitats, genes introduced into transgenic plants are abundant, and natural HGT frequencies are relatively high providing a greater chance for direct transfer instead of via transgenic plants. It is concluded that potential HGT from transgenic plants to prokaryotes is not expected to influence prokaryotic evolution and to have negative effects on human or animal health and the environment.


Horizontal gene transfer Illegitimate recombination Homologous recombination Foreign DNA translocation Transgenic plant DNA 



We thank Nils Hülter for help during preparation of the manuscript and Johannes Sikorski for critical reading of the text.

Supplementary material

253_2010_2489_MOESM1_ESM.pdf (59 kb)
Supplementary Table Introduced genes in transgenic plants with their natural source and its presence in the environment, food, and feed (PDF 58 kb)


  1. Alpert CA, Mater DD, Muller MC, Ouriet MF, Duval-Iflah Y, Corthier G (2003) Worst-case scenarios for horizontal gene transfer from Lactococcus lactis carrying heterologous genes to Enterococcus faecalis in the digestive tract of gnotobiotic mice. Environ Biosafety Res 2:173–180Google Scholar
  2. Ammann A, Neve H, Geis A, Heller KJ (2008) Plasmid transfer via transduction from Streptococcus thermophilus to Lactococcus lactis. J Bacteriol 190:3083–3087Google Scholar
  3. Auchtung JM, Lee CA, Monson RE, Lehman AP, Grossman AD (2005) Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response. Proc Natl Acad Sci USA 102:12554–12559Google Scholar
  4. Averhoff B (2009) Shuffling genes around in hot environments: the unique DNA transporter of Thermus thermophilus. FEMS Microbiol Rev 33:611–626Google Scholar
  5. Badosa E, Moreno C, Montesinos E (2004) Lack of detection of ampicillin resistance gene transfer from Bt176 transgenic corn to culturable bacteria under field conditions. FEMS Microbiol Ecol 48:169–178Google Scholar
  6. Bahl MI, Hansen LH, Sørensen SJ (2009) Persistence mechanisms of conjugative plasmids. Methods Mol Biol 532:73–102Google Scholar
  7. Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marliere P, Cohen GN, Medigue C (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32:5766–5779Google Scholar
  8. Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. Methods Mol Biol 532:397–411Google Scholar
  9. Barlow M, Hall BG (2002) Phylogenetic analysis shows that the OXA beta-lactamase genes have been on plasmids for millions of years. J Mol Evol 55:314–321Google Scholar
  10. Barth C, Wilczynska Z, Pontes L, Fraser DJ, Fisher PR (1996) Efficient circularization in Escherichia coli of linear plasmid multimers from Dictyostelium discoideum genomic DNA. Plasmid 36:86–94Google Scholar
  11. Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74Google Scholar
  12. Beiko RG, Ragan MA (2008) Detecting lateral genetic transfer: a phylogenetic approach. Methods Mol Biol 452:457–469Google Scholar
  13. Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci USA 102:14332–14337Google Scholar
  14. Bellgard MI, Wanchanthuek P, La T, Ryan K, Moolhuijzen P, Albertyn Z, Shaban B, Motro Y, Dunn DS, Schibeci D, Hunter A, Barrero R, Phillips ND, Hampson DJ (2009) Genome sequence of the pathogenic intestinal spirochete Brachyspira hyodysenterica reveals adaptations to its lifestyle in the porcine large intestine. PloS One 4:e4641Google Scholar
  15. Bennett PM (2008) Plasmid encoded antibiotic resistance acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153(Suppl 1):S347–S357Google Scholar
  16. Bennett PM, Livesey CT, Nathwani D, Reeves DS, Saunders JR, Wise R (2004) An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J Antimicrob Chemother 53:418–431Google Scholar
  17. Berndt C, Meier P, Wackernagel W (2003) DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300. Microbiology 149:895–901Google Scholar
  18. Bertolla F, Pepin R, Passelegue-Robe E, Paget E, Simkin A, Nesme X, Simonet P (2000) Plant genome complexity may be a factor limiting in situ the transfer of transgenic plant genes to the phytopathogen Ralstonia solanacearum. Appl Environ Microbiol 66:4161–4167Google Scholar
  19. Binh CT, Heuer H, Kaupenjohann M, Smalla K (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37Google Scholar
  20. Bouvier M, Demarre G, Mazel D (2005) Integron cassette insertion: a recombination process involving a folded single strand substrate. EMBO J 24:4356–4367Google Scholar
  21. Boxall AB, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91Google Scholar
  22. Broer I, Dröge-Laser W, Gerke M (1996) Examination of the putative horizontal gene transfer from transgenic plants to Agrobacteria. In: Schmidt ER, Hankeln T (eds) Transgenic organisms and biosafety: horizontal gene transfer, stability of DNA and expression of transgenes. Springer-Verlag, Heidelberg, pp 67–70Google Scholar
  23. Brüssow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602Google Scholar
  24. Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155:376–386Google Scholar
  25. Canchaya C, Fournous G, Brüssow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18Google Scholar
  26. Carnoy C, Roten CA (2009) The dif/Xer recombination systems in proteobacteria. PloS One 4:e6531Google Scholar
  27. Ceccherini MT, Pote J, Kay E, Van VT, Maréchal J, Pietramellara G, Nannipieri P, Vogel TM, Simonet P (2003) Degradation and transformability of DNA from transgenic leaves. Appl Environ Microbiol 69:673–678Google Scholar
  28. Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nature Rev Microbiol 2:241–249Google Scholar
  29. Chen S, Zhao S, White DG, Schroeder CM, Lu R, Yang H, McDermott PF, Ayers S, Meng J (2004) Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl Environ Microbiol 70:1–7Google Scholar
  30. Cherbas L, Cherbas P (1997) “Parahomologous” gene targeting in Drosophila cells: an efficient, homology-dependent pathway of illegitimate recombination near a target site. Genetics 145:349–358Google Scholar
  31. Choi KH, Kim KJ (2009) Applications of transposon-based gene delivery system in bacteria. J Microbiol Biotechnol 19:217–228Google Scholar
  32. Cohan FM (2002) Sexual isolation and speciation in bacteria. Genetica 116:359–370Google Scholar
  33. Courvalin P (2008) Predictable and unpredictable evolution of antibiotic resistance. J Intern Med 264:4–16Google Scholar
  34. Davids W, Zhang Z (2008) The impact of horizontal gene transfer in shaping operons and protein interaction networks—direct evidence of preferential attachment. BMC Evol Biol 8:23–35Google Scholar
  35. de Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol Gen Genet 257:606–613Google Scholar
  36. de Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl Acad Sci USA 99:2094–2099Google Scholar
  37. de Vries J, Wackernagel W (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266:91–104Google Scholar
  38. de Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195:211–215Google Scholar
  39. de Vries J, Heine M, Harms K, Wackernagel W (2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl Environ Microbiol 69:4455–4462Google Scholar
  40. de Vries J, Herzfeld T, Wackernagel W (2004) Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol Microbiol 53:323–334Google Scholar
  41. Demanèche S, Sanguin H, Poté J, Navarro E, Bernillon D, Mavingui P, Wildi W, Vogel TM, Simonet P (2008) Antibiotic-resistant soil bacteria in transgenic plant fields. Proc Natl Acad Sci USA 105:3957–3962Google Scholar
  42. Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61:219–224Google Scholar
  43. Draper O, César CE, Machón C, de la Cruz F, Llosa M (2005) Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells. Proc Natl Acad Sci USA 102:16385–16390Google Scholar
  44. Dröge M, Pühler A, Selbitschka W (1998) Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol 64:75–90Google Scholar
  45. Dufraigne C, Fertil B, Lespinats S, Giron A, Deschavanne P (2005) Detection and characterization of horizontal transfers in prokaryotes using genomic signature. Nucleic Acids Res 33(1):e6Google Scholar
  46. Ehrlich SD (1989) Illegitimate recombination in bacteria. In: Berg DE, Howe MM (eds) Mobile DNA. ASM Press, Washington, pp 799–832Google Scholar
  47. Frederiksen K, Rosenquist H, Jørgensen K, Wilcks A (2006) Occurrence of natural Bacillus thuringiensis contaminants and residues of Bacillus thuringiensis-based insecticides on fresh fruits and vegetables. Appl Environ Microbiol 72:3435–3440Google Scholar
  48. Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl Environ Microbiol 64:1550–1554Google Scholar
  49. Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol Ecol 28:261–272Google Scholar
  50. Ghosh S, LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic-resistance among soil bacteria. ISME J 1:191–203Google Scholar
  51. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nature Rev Microbiol 3:679–687Google Scholar
  52. Graupner S, Wackernagel W (1996) Identification of multiple plasmids released from recombinant genomes of Hansenula polymorpha by transformation of Escherichia coli. Appl Environ Microbiol 62:1839–1841Google Scholar
  53. Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605Google Scholar
  54. Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301Google Scholar
  55. Guerra B, Junker E, Schroeter A, Malorny B, Lehmann S, Helmuth R (2003) Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J Antimicrob Chemother 52:489–492Google Scholar
  56. Guerra B, Junker E, Schroeter A, Helmuth R, Guth BE, Beutin L (2006) Phenotypic and genotypic characterization of antimicrobial resistance in Escherichia coli O111 isolates. J Antimicrob Chemother 57:1210–1214Google Scholar
  57. Harms K, Wackernagel W (2008) The RecBCD and SbcCD DNases suppress homology-facilitated illegitimate recombination during natural transformation of Acinetobacter baylyi. Microbiology 154:2437–2445Google Scholar
  58. Harms K, Schön V, Kickstein E, Wackernagel W (2007) The RecJ DNase strongly suppresses genomic integration of short but not long foreign DNA fragments by homology-facilitated illegitimate recombination during transformation of Acineotbacter baylyi. Mol Microbiol 64:691–702Google Scholar
  59. Havlickova H, Hradecka H, Bernardyova I, Rychlik I (2009) Distribution of integrons and SGI1 among antibiotic resistant Salmonella enterica isolates of animal origin. Vet Microbiol 133:193–198Google Scholar
  60. Heritage J (2005) The fate of transgenes in the human gut. Nature Biotechnol 23:17–21Google Scholar
  61. Heuer H, Krogerrecklenfort E, Wellington EMH, Egan S, van Elsas JD, van Overbeek L, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, Smalla K (2002) Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302Google Scholar
  62. Hohlweg U, Doerfler W (2001) On the fate of plant or other foreign genes upon the uptake in food or after intramuscular injection in mice. Mol Genet Genomics 265:225–233Google Scholar
  63. Holmfeldt K, Middelboe M, Nybroe O, Riemann L (2007) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73:6730–6739Google Scholar
  64. Hughes VM, Datta N (1983) Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302:725–726Google Scholar
  65. Hülter N, Wackernagel W (2008a) Frequent integration of short homologous DNA tracks during Acinetobacter baylyi transformation and influence of transcription and RecJ and SbcCD DNases. Microbiology 154:3676–3685Google Scholar
  66. Hülter N, Wackernagel W (2008b) Double illegitimate recombination events integrate DNA segments through two different mechanisms during natural transformation of Acinetobacter baylyi. Mol Microbiol 67:984–995Google Scholar
  67. Huys G, Cnockaert M, Vaneechoutte M, Woddford N, Nemec A, Dijkshoorn L, Swings J (2005) Distribution of tetracycline resistance genes in genotypically related and unrelated multiresistant Acinetobacter baumannii strains from different European hospitals. Res Microbiol 156:348–355Google Scholar
  68. Itaya M (1999) Genetic transfer of large DNA inserts to designated loci of the Bacillus subtilis 168 genome. J Bacteriol 181:1045–1048Google Scholar
  69. Iwaki M, Arakawa Y (2006) Transformation of Acinetobacter sp. BD413 with DNA from commercially available genetically modifies potato and papaya. Lett Appl Microbiol 43:215–221Google Scholar
  70. Iwasaki W, Takagi T (2009) Rapid pathway evolution facilitated by horizontal gene transfers across prokaryotic lineages. PloS Genetics 5:1–8Google Scholar
  71. Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, Kokjohn TA (1998) Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64:575–580Google Scholar
  72. Johnsborg O, Eldholm V, Bjørnstadt ML, Havarstein LS (2008) A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol Microbiol 69:245–253Google Scholar
  73. Joss MJ, Koenig JE, Labbate M, Polz MF, Gillings MR, Stokes HW, Doolittle WF, Boucher Y (2009) ACID: annotation of cassette and integron data. BMC Bioinformatics 10:118–126Google Scholar
  74. Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393Google Scholar
  75. Kaelin P, Gadani F (2000) Occurrence of Bacillus thuringiensis on cured tobacco leaves. Curr Microbiol 40:205–209Google Scholar
  76. Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl Environ Microbiol 68:3345–3351Google Scholar
  77. Keese P (2008) Risks from GMOs due to horizontal gene transfer. Environ Biosafety Res 7:123–149Google Scholar
  78. Kelly BG, Vespermann A, Bolton DJ (2009) Gene transfer events and their occurrence in selected environments. Food Chem Toxicol 47:978–983Google Scholar
  79. Kharazmi M, Hammes WP, Hertel C (2002) Construction of a marker rescue system in Bacillus subtilis for detection of horizontal gene transfer in food. System Appl Microbiol 25:471–477Google Scholar
  80. Kim MC, Ahn JH, Shin HC, Kim T, Ryu TH, Kim DH, Song HG, Lee GH, Ka JO (2008) Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204. J Microbiol Biotechnol 18:207–218Google Scholar
  81. Kleter GA, Peijnenburg AA, Aarts HJ (2005) Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. J Biomed Biotechnol 4:326–352Google Scholar
  82. Klotz A, Mayer J, Einspanier R (2002) Degradation and possible carry over of feed DNA monitored in pigs and poultry. Eur Food Res Technol 214:271–275Google Scholar
  83. Koonin EV (2007) The biological big bang model for the major transitions in evolution. Biol Direct 2:21Google Scholar
  84. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36:6688–6719Google Scholar
  85. Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465Google Scholar
  86. Krzywinska E, Krzywinska J, Schorey JS (2004) Naturally occurring horizontal gene transfer and homologous recombination in Mycobacterium. Microbiology 150:1707–1712Google Scholar
  87. Kunes S, Botstein D, Fox MS (1990) Synapsis-mediated fusion of free DNA ends forms inverted dimer plasmids in yeast. Genetics 124:67–80Google Scholar
  88. Kusano K, Sakagami K, Yokochi T, Naito T, Tokinaga Y, Ueda E, Kobayashi I (1997) A new type of illegitimate recombination is dependent on restriction and homologous interaction. J Bacteriol 179:5380–5390Google Scholar
  89. Labbate M, Case RJ, Stokes HW (2009) The integron/gene cassette system: an active player in bacterial adaptation. Methods Mol Biol 532:103–125Google Scholar
  90. Lang AS, Beatty JT (2007) Importance of widespread gene transfer agent genes in alpha-proteobacteria. Trends Microbiol 15:54–62Google Scholar
  91. Larios-Sanz M, Travisano M (2009) Experimental evolution of an essential Bacillus gene in an E. coli host. Methods Mol Biol 532:269–287Google Scholar
  92. Lau SK, Wong GK, Li MW, Woo PC, Yuen KY (2008) Distribution and molecular characterization of tetracycline resistance in Laribacter honkongensis. J Antimicrob Chemother 61:488–497Google Scholar
  93. Lawrence JG, Ochman H (1997) Amelioration of bacteria genomes: rates of change and exchange. J Mol Evol 44:383–397Google Scholar
  94. Lawrence JG, Retchless AC (2009) The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Methods Mol Biol 532:29–53Google Scholar
  95. Lee CA, Grossman AD (2007) Identification of the origin of transfer (oriT) and DNA relaxase required for conjugation of the integrative and conjugative element ICEBs1 of Bacillus subtilis. J Bacteriol 189:7254–7261Google Scholar
  96. Leplae R, Hebrant A, Wodak SJ, Toussaint A (2004) ACLAME: a classification of mobile genetic elements. Nucleic Acids Res 32:D45–D49Google Scholar
  97. Lercher MJ, Pal C (2008) Integration of horizontal transferred genes into regulatory interaction networks takes many million years. Mol Biol Evol 25:559–567Google Scholar
  98. Lewin A, Jacob D, Freytag B, Appel B (1998) Gene expression in bacteria directed by plant-specific regulatory sequences. Trans Res 7:403–411Google Scholar
  99. Lo CC, Chen SC, Yang JZ (2007) Use of real-time polymerase chain reaction (PCR) and transformation assay to monitor the persistence and bioavailability of transgenic genes released from genetically modified papaya expressing nptII and PRSV genes in the soil. J Agric Food Chem 55:7534–7540Google Scholar
  100. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602Google Scholar
  101. Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JC (2006) H-NS mediates the silencing of laterally acquired genes in bacteria. PloS Pathog 2:e81Google Scholar
  102. Ma M, Wang H, Yu Y, Zhang D, Liu S (2007) Detection of antimicrobial resistance genes of pathogenic Salmonella from swine with DNA microarray. J Vet Diagn Invest 19:161–167Google Scholar
  103. Majewski J (2001) Sexual isolation in bacteria. FEMS Microbiol Lett 199:161–169Google Scholar
  104. Majewski J, Zawadski P, Pickerill P, Cohan FM, Dowson CG (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 182:1016–1023Google Scholar
  105. Mann BA, Slauch JM (1997) Transduction of low-copy number plasmids by bacteriophage P22. Genetics 146:447–456Google Scholar
  106. Martin PA, Travers RS (1989) Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol 55:2437–2442Google Scholar
  107. Matic I, Taddei F, Radman M (1996) Genetic barriers among bacteria. Trends Microbiol 4:69–72Google Scholar
  108. Maughan H, Redfield RJ (2009) Extensive variation in natural competence in Haemophilus influenzae. Evolution 63:1852–1866Google Scholar
  109. Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620Google Scholar
  110. Meier P, Wackernagel W (2003) Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol Microbiol 48:1107–1118Google Scholar
  111. Meier P, Wackernagel W (2005) Impact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri. J Bacteriol 187:143–154Google Scholar
  112. Mercer DK, Scott KP, Melville CM, Glover LA, Flint HJ (2001) Transformation of an oral bacterium via chromosomal integration of free DNA in the presence of human saliva. FEMS Microbiol Lett 200:163–167Google Scholar
  113. Mindlin SZ, Soina VS, Ptrova MA, Gorlenko Z (2008) Isolation of antibiotic resistance bacterial strains from East Siberia permafrost sediments. Genetika 44:36–44Google Scholar
  114. Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133Google Scholar
  115. Monier JM, Bernillon D, Kay E, Faugier A, Rybalka O, Dessaux Y, Simonet P, Vogel TM (2007) Detection of potential transgenic plant DNA recipients among soil bacteria. Environ Biosafety Res 6:71–83Google Scholar
  116. Morris P, Marinelli LJ, Jacobs-Sera D, Hendrix RW, Hatfull GF (2008) Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination. J Bacteriol 190:2172–2182Google Scholar
  117. Nagy Z, Chandler M (2004) Regulation of transposition in bacteria. Res Microbiol 155:387–398Google Scholar
  118. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC (2006) Selective silencing of foreign DNA with low GC content by H-NS protein in Salmonella. Science 313:236–238Google Scholar
  119. Navarre WW, McClelland M, Libby SJ, Fang FC (2007) Silencing of xenogeneic DNA by H-NS—facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 21:1456–1471Google Scholar
  120. Nesbø CL, Boucher Y, Dlutek M, Doolittle WF (2005) Lateral gene transfer and phylogenetic assignment of environmental fosmid clones. Environ Microbiol 7:2011–2026Google Scholar
  121. Nielsen KM, Gebhard F, Smalla K, Bones AM, van Elsas JD (1997) Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theor Appl Genet 95:815–821Google Scholar
  122. Nielsen KM, van Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. strain BD413 (pFG4ΔnptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl Environ Microbiol 66:1237–1242Google Scholar
  123. Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ Biosafety Res 6:37–53Google Scholar
  124. Osborn AM, Böltner D (2002) When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48:202–212Google Scholar
  125. Oshima T, Ishikawa S, Kurokawa K, Aiba H, Ogasawara N (2006) Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res 13:141–153Google Scholar
  126. Ouoba LI, Lei V, Jensen LB (2008) Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria. Inter J Food Microbiol 121:217–224Google Scholar
  127. Paget E, Simonet P (1994) On the track of natural transformation in soil. FEMS Microbiol Ecol 15:109–118Google Scholar
  128. Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Eur J Soil Biol 34:81–88Google Scholar
  129. Parks AR, Peters JE (2009) Tn7 elements: engendering diversity from chromosomes to episomes. Plasmid 61:1–14Google Scholar
  130. Partridge SR, Tsafnat G, Coiera E, Iredell JR (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33:757–784Google Scholar
  131. Peirano G, Agerso Y, Aarestrup FM, dos Prazeres RD (2005) Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil. J Antimicrob Chemother 55:301–305Google Scholar
  132. Pontiroli A, Rizzi A, Simonet P, Daffonchio D, Vogel TM, Monier JM (2009) Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. Appl Environ Microbiol 75:3314–3322Google Scholar
  133. Prudhomme M, Libante V, Claverys JP (2002) Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc Natl Acad Sci USA 99:2100–2105Google Scholar
  134. Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89–92Google Scholar
  135. Radman-Livaja M, Biswas T, Ellenberger T, Landy A, Aihara H (2006) DNA arms do the legwork to ensure the directionality of lambda site-specific recombination. Curr Opin Struct Biol 16:42–50Google Scholar
  136. Rajeev L, Malanowska K, Gardner JF (2009) Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 73:300–309Google Scholar
  137. Reznikoff WS (2008) Transposon Tn5. Annu Rev Genet 42:269–286Google Scholar
  138. Ripp S, Miller RV (1995) Effects of suspended particulates on the frequency of transduction among Pseudomonas aeruginosa in a freshwater environment. Appl Environ Microbiol 61:1214–1219Google Scholar
  139. Rizzi A, Brusetti L, Arioli S, Nielsen KM, Tamagnini I, Tamburini A, Sorlini C, Daffonchio D (2008a) Detection of feed-derived maize DNA in goat milk and evaluation of the potential of horizontal transfer to bacteria. Eur Food Res Technol 227:1699–1709Google Scholar
  140. Rizzi A, Pontiroli A, Brusetti L, Borin S, Sorlini C, Abruzzese A, Sacchi GA, Vogel TM, Simonet P, Bazzicalupo M, Nielsen KM, Monier JM, Daffonchio D (2008b) Strategy for in situ detection of natural transformation-based horizontal gene transfer events. Appl Environ Microbiol 74:1250–1254Google Scholar
  141. Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71Google Scholar
  142. Schlüter K, Fütterer J, Potrykus I (1995) “Horizontal” gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs—if at all—at an extremely low frequency. Biotechnology 13:1094–1098Google Scholar
  143. Schubbert R, Lettmann C, Doerfler W (1994) Ingested foreign (phage M13) DNA survives transiently in the gastrointestinal tract and enters the bloodstream of mice. Mol Gen Genet 242:495–504Google Scholar
  144. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223Google Scholar
  145. Sharma R, Damgaard D, Alexander TW, Dugan ME, Aalhus JL, Stanford K, McAllister TA (2006) Detection of transgenic and endogenous plant DNA in digesta and tissues of sheep and pigs fed Roundup Ready canola meal. J Agric Food Chem 54:1699–1709Google Scholar
  146. Sikorski J, Graupner S, Lorenz MG, Wackernagel W (1998) Natural genetic transformation of Pseudomonas stutzeri in a nonsterile soil. Microbiology 144:569–576Google Scholar
  147. Sikorski J, Teschner N, Wackernagel W (2002) Highly different levels of natural transformation are associated with genomic subgroups within a local population of Pseudomonas stutzeri from soil. Appl Environ Microbiol 68:865–873Google Scholar
  148. Simpson DJ, Dawson LF, Fry JC, Rogers HJ, Day MJ (2007a) Influence of flanking homology and insert size on the transformation frequency of Acinetobacter baylyi BD413. Environ Biosafety Res 6:55–69Google Scholar
  149. Simpson DJ, Fry JC, Rogers HJ, Day MJ (2007b) Transformation of Acinetobacter baylyi in non-sterile soil using recombinant plant nuclear DNA. Environ Biosafety Res 6:101–112Google Scholar
  150. Smalla K, van Overbeek LS, Pukall R, van Elsas JD (1994) Prevalence of nptII and Tn5 in kanamycin-resistant bacteria from different environments. FEMS Microbiol Ecol 13:47–58Google Scholar
  151. Sobecky PA, Coombs JM (2009) Horizontal gene transfer in metal and radionuclide contaminated soils. Methods Mol Biol 532:455–472Google Scholar
  152. Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449–1452Google Scholar
  153. Stanton TB (2007) Prophage-like gene transfer agents—novel mechanisms of gene exchange for Methanococcus, Desulfovibrio, Brachyspira, and Rhodobacter species. Anaerobe 13:43–49Google Scholar
  154. Stedman KM, She Q, Phan H, Holz I, Singh H, Prangishvili D, Garrett R, Zillig W (2000) pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: insights into recombination and conjugation in Crenarchaeota. J Bacteriol 182:7014–7020Google Scholar
  155. Stoebel DM, Free A, Dorman CJ (2008) Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology 154:2533–2545Google Scholar
  156. Tepfer D, Garcia-Gonzales R, Mansouri H, Seruga M, Message B, Leach F, Curkovic Perica M (2003) Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer. Transgenic Res 12:425–437Google Scholar
  157. Thomas CM, Nielsen KM (2005) Mechanism of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721Google Scholar
  158. Tsuru T, Kobayashi I (2008) Multiple genome comparison within a bacterial species reveals a unit of evolution spanning two adjacent genes in a tandem paralog cluster. Mol Biol Evol 25:2457–2473Google Scholar
  159. Tuteja D, Dua M, Khanna R, Dhingra N, Khanna M, Kaur H, Saxena DM, Lal R (2000) The importance of homologous recombination in the generation of large deletions in hybrid plasmids in Amycolatopsis mediterranei. Plasmid 43:1–11Google Scholar
  160. Ubeda C, Maiques E, Knecht E, Lasa I, Novick RP, Penadés JR (2005) Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol Microbiol 56:836–844Google Scholar
  161. Val ME, Bouvier M, Campos J, Sherratt D, Cornet F, Mazel D, Barre FX (2005) The single-stranded genome of phage CTX is the form used for integration into the genome of Vibrio cholerae. Mol Cell 19:559–566Google Scholar
  162. Valadares de Amorim G, Whittome B, Shore B, Levin DB (2001) Identification of Bacillus thuringiensis subsp. kurstaki strain HD1-like bacteria from environmental and human samples after aerial spraying of Victoria, British Columbia, Canada, with Foray 48B. Appl Environ Microbiol 67:1035–1043Google Scholar
  163. van den Eede G, Aarts H, Buhk HJ, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midvedt T, van der Vossen J, von Wright A, Wackernagel W, Wilcks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem Toxicol 42:1127–1156Google Scholar
  164. Wackernagel W (2006) The various sources and the fate of nucleic acids in soil. In: Nannipieri P, Smalla K (eds) Soil biology, Vol. 8, nucleic acids and proteins in soil. Springer Verlag, Berlin, pp 117–139Google Scholar
  165. Wagner T, Arango Isaza LM, Grundmann S, Dörfler U, Schroll R, Schloter M, Hartmann A, Sandermann H, Ernst D (2008) The probability of a horizontal gene transfer from Roundup Ready soybean to root symbiotic bacteria: a risk assessment study on the GSF lysimeter station. Water, Air, & Soil Pollution Focus 8(2):155–162Google Scholar
  166. Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11Google Scholar
  167. Weisberg RA (1996) Specialized transduction. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, Vol 2. ASM Press, Washington, pp 2442–2448Google Scholar
  168. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583Google Scholar
  169. Zaneveld JR, Nemergut DR, Knight R (2008) Are all horizontal gene transfers created equal? Prospects for mechanism-based studies of HGT patterns. Microbiology 154:1–15Google Scholar
  170. Zawadski P, Roberts MS, Cohan FM (1995) The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140:917–932Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Genetik, Institut für Biologie und Umweltwissenschaften, Fakultät für Mathematik und NaturwissenschaftenC.v.O. Universität OldenburgOldenburgGermany
  2. 2.Bundesamt für Verbraucherschutz und LebensmittelsicherheitBerlinGermany

Personalised recommendations