Applied Microbiology and Biotechnology

, Volume 86, Issue 5, pp 1195–1212 | Cite as

Genetic improvement of brewer’s yeast: current state, perspectives and limits

  • Sofie M. G. Saerens
  • C. Thuy Duong
  • Elke Nevoigt
Mini-Review

Abstract

Brewer’s yeast strain optimisation may lead to a more efficient beer production process, better final quality or healthier beer. However, brewer’s yeast genetic improvement is very challenging, especially true when it comes to lager brewer’s yeast (Saccharomyces pastorianus) which contributes to 90% of the total beer market. This yeast is a genetic hybrid and allopolyploid. While early studies applying traditional genetic approaches encountered many problems, the development of rational metabolic engineering strategies successfully introduced many desired properties into brewer’s yeast. Recently, the first genome sequence of a lager brewer’s strain became available. This has opened the door for applying advanced omics technologies and facilitating inverse metabolic engineering strategies. The latter approach takes advantage of natural diversity and aims at identifying and transferring the crucial genetic information for an interesting phenotype. In this way, strains can be optimised by introducing “natural” mutations. However, even when it comes to self-cloned strains, severe concerns about genetically modified organisms used in the food and beverage industry are still a major hurdle for any commercialisation. Therefore, research efforts will aim at developing new sophisticated screening methods for the isolation of natural mutants with the desired properties which are based on the knowledge of genotype–phenotype linkage.

Keywords

Beer Brewer’s yeast S. pastorianus Metabolic engineering Strain improvement S. cerevisiae 

References

  1. Akada R (2002) Genetically modified industrial yeast ready for application. J Biosci Bioeng 94:536–544Google Scholar
  2. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683Google Scholar
  3. Andersen T, Hoffmann L, Grifone R, Nilsson-Tillgren T, Kielland-Brandt M (2000) Brewing yeast genetics. EBC Monograph Nürnberg, Fachverlag Hans Carl, pp 140–147Google Scholar
  4. Ansorge WJ (2009) Next-generation DNA sequencing techniques. Nat Biotechnol 25:195–203Google Scholar
  5. Attfield AV, Bell PJL (2003) Genetics and classical genetic manipulations of industrial yeasts. In: JHd W (ed) Functional genetics of industrial yeasts. Springer, Berlin, pp 17–55Google Scholar
  6. Bilinski CA, Casey J (1989) Developments in sporulation and breeding of brewer’s yeast. Yeast 5:429–438Google Scholar
  7. Blieck L, Toye G, Dumortier F, Verstrepen KJ, Delvaux FR et al (2007) Isolation and characterization of brewer’s yeast variants with improved fermentation performance under high-gravity conditions. Appl Environ Microbiol 73:815–824Google Scholar
  8. Blomqvist K, Suihko ML, Knowles J, Penttila M (1991) Chromosomal integration and expression of two bacterial alpha-acetolactate decarboxylase genes in brewer’s yeast. Appl Environ Microbiol 57:2796–2803Google Scholar
  9. Bond U, Neal C, Donnelly D, James TC (2004) Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation. Curr Genet 45:360–370Google Scholar
  10. Borsting C, Hummel R, Schultz ER, Rose TM, Pedersen MB et al (1997) Saccharomyces carlsbergensis contains two functional genes encoding the acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 gene from S. monacensis. Yeast 13:1409–1421Google Scholar
  11. Boulton CA, Quain DE (2001) Brewing yeast and fermentation. Blackwell Science, OxfordGoogle Scholar
  12. Brejning J, Arneborg N, Jespersen L (2005) Identification of genes and proteins induced during the lag and early exponential phase of lager brewing yeasts. J Appl Microbiol 98:261–271Google Scholar
  13. Cakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578Google Scholar
  14. Caro LH, Tettelin H, Vossen JH, Ram AF, van den Ende H et al (1997) In silico identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489Google Scholar
  15. Casaregola S, Nguyen HV, Lapathitis G, Kotyk A, Gaillardin C (2001) Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridization. Int J Syst Evol Microbiol 51:1607–1618Google Scholar
  16. Cebollero E, Gonzalez-Ramos D, Tabera L, Gonzalez R (2007) Transgenic wine yeast technology comes of age: is it time for transgenic wine? Biotechnol Lett 29:191–200Google Scholar
  17. Charron MJ, Michels CA (1988) The naturally occurring alleles of MAL1 in Saccharomyces species evolved by various mutagenic processes including chromosomal rearrangement. Genetics 120:83–93Google Scholar
  18. Charron MJ, Read E, Haut SR, Michels CA (1989) Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics 122:307–316Google Scholar
  19. Cole GE, McCabe PC, Inlow D, Gelfand DH, Ben-Bassat A et al (1988) Stable expression of Aspergillus awamori glucoamylase in distiller’s yeast. Biotechnology 6:417–421Google Scholar
  20. Daran-Lapujade P, Daran JM, Kotter P, Petit T, Piper MD et al (2003) Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res 4:259–269Google Scholar
  21. Day RE, Higgins VJ, Rogers PJ, Dawes IW (2002a) Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast 19:1015–1027Google Scholar
  22. Day RE, Rogers PJ, Dawes IW, Higgins VJ (2002b) Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae. Appl Environ Microbiol 68:5326–5335Google Scholar
  23. Dequin S (2001) The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl Microbiol Biotechnol 56:577–588Google Scholar
  24. Dietvorst J, Londesborough J, Steensma HY (2005) Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22:775–788Google Scholar
  25. Dion B, Brown GW (2009) Comparative genome hybridization on tiling microarrays to detect aneuploidies in yeast. Methods Mol Biol 548:1–18Google Scholar
  26. Donalies UE, Stahl U (2001) Phase-specific gene expression in Saccharomyces cerevisiae, using maltose as carbon source under oxygen-limiting conditions. Curr Genet 39:150–155Google Scholar
  27. Donalies UE, Stahl U (2002) Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast 19:475–484Google Scholar
  28. Donalies UE, Nguyen HT, Stahl U, Nevoigt E (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. Adv Biochem Eng Biotechnol 111:67–98Google Scholar
  29. Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18:1610–1623Google Scholar
  30. Engan S (1972) Organoleptic threshold values of some alcohols and esters in beer. J Inst Brew 78:33–37Google Scholar
  31. Fujii T, Kondo K, Shimizu F, Sone H, Tanaka J et al (1990) Application of a ribosomal DNA integration vector in the construction of a brewer’s yeast having alpha-acetolactate decarboxylase activity. Appl Environ Microbiol 56:997–1003Google Scholar
  32. Fujii T, Nagasawa N, Iwamatsu A, Bogaki T, Tamai Y et al (1994) Molecular cloning, sequence analysis, and expression of the yeast alcohol acetyltransferase gene. Appl Environ Microbiol 60:2786–2792Google Scholar
  33. Fujii T, Yoshimoto H, Nagasawa N, Bogaki T, Tamai Y et al (1996a) Nucleotide sequences of alcohol acetyltransferase genes from lager brewing yeast, Saccharomyces carlsbergensis. Yeast 12:593–598Google Scholar
  34. Fujii T, Yoshimoto H, Tamai Y (1996b) Acetate ester production by Saccharomyces cerevisiae lacking the ATF1 gene encoding the alcohol acetyltransferase. J Ferment Bioeng 81:538–542Google Scholar
  35. Garcia DE, Baidoo EE, Benke PI, Pingitore F, Tang YJ et al (2008) Separation and mass spectrometry in microbial metabolomics. Curr Opin Microbiol 11:233–239Google Scholar
  36. Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569Google Scholar
  37. Gibson BR, Boulton CA, Box WG, Graham NS, Lawrence SJ et al (2008) Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation. Yeast 25:549–562Google Scholar
  38. Gjermansen C, Sigsgaard P (1981) Construction of a hybrid brewing strain of Saccharomyces carlsbergensis by mating meiotic segregants. Carlsberg Res Comm 46:1–11Google Scholar
  39. Godtfredsen SE, Ottesen M (1982) Maturation of beer with α-acetolactate decarboxylase. Carlsberg Res Commun 47:93–102Google Scholar
  40. Goelling D, Stahl U (1988) Cloning and expression of an alpha-acetolactate decarboxylase gene from Streptococcus lactis subsp. diacetylactis in Escherichia coli. Appl Environ Microbiol 54:1889–1891Google Scholar
  41. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B et al (1996) Life with 6000 genes. Science 274(546):563–567Google Scholar
  42. Goldenthal MJ, Vanoni M, Buchferer B, Marmur J (1987) Regulation of MAL gene expression in yeast: gene dosage effects. Mol Gen Genet 209:508–517Google Scholar
  43. Gonzalez SS, Barrio E, Querol A (2008) Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl Environ Microbiol 74:2314–2320Google Scholar
  44. Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae Appl Environ Microbiol 74(19):6041–6052Google Scholar
  45. Gresham D, Ruderfer DM, Pratt SC, Schacherer J, Dunham MJ et al (2006) Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray. Science 311:1932–1936Google Scholar
  46. Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA et al (2008) The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4:e1000303Google Scholar
  47. Gstaiger M, Aebersold R (2009) Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 10:617–627Google Scholar
  48. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 97:9390–9395Google Scholar
  49. Hahn MW, De Bie T, Stajich JE, Nguyen C, Cristianini N (2005) Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res 15:1153–1160Google Scholar
  50. Hammond JR (1995) Genetically-modified brewing yeasts for the 21st century. Progress to date. Yeast 11:1613–1627Google Scholar
  51. Hansen EC (1883) Recherches sur la physiologie et la morphologie des ferments alcooliques V. Methodes pour obtenir des cultures pures de Saccharomyces et de mikroorganismes analogues. C R Trav Lab Carlsberg 2:92–105Google Scholar
  52. Hansen EC (1908) Investigations on the physiology and morphology of budding yeast. XII. New studies of bottom fermenting brewers yeast. C R Trav Lab Carlsberg 7:179–217Google Scholar
  53. Hansen J (1999) Inactivation of MXR1 abolishes formation of dimethyl sulfide from dimethyl sulfoxide in Saccharomyces cerevisiae. Appl Environ Microbiol 65:3915–3919Google Scholar
  54. Hansen J, Kielland-Brandt MC (1994) Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologs from S. cerevisiae and S. monacensis. Gene 140:33–40Google Scholar
  55. Hansen J, Kielland-Brandt MC (1996) Inactivation of MET10 in brewer’s yeast specifically increases SO2 formation during beer production. Nat Biotechnol 14:1587–1591Google Scholar
  56. Hansen J, Kielland-Brandt M (1997) Brewer’s yeast. In: Zimmerman F, Entian K (eds) Yeast sugar metabolism, biochemistry, genetics, biotechnology and applications. Technomic, New York, pp 503–526Google Scholar
  57. Hansen J, Kielland-Brandt MC (2003) Brewer’s yeast: genetic structure and targets for improvement. In: Winde JHd (ed) Functional genetics of industrial yeasts. Springer, Berlin pp 143–203Google Scholar
  58. Hansen J, Cherest H, Kielland-Brandt MC (1994) Two divergent MET10 genes, one from Saccharomyces cerevisiae and one from Saccharomyces carlsbergensis, encode the alpha subunit of sulfite reductase and specify potential binding sites for FAD and NADPH. J Bacteriol 176:6050–6058Google Scholar
  59. Harrison P, Kumar A, Lan N, Echols N, Snyder M et al (2002) A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. J Mol Biol 316:409–419Google Scholar
  60. Higgins VJ, Beckhouse AG, Oliver AD, Rogers PJ, Dawes IW (2003) Yeast genome-wide expression analysis identifies a strong ergosterol and oxidative stress response during the initial stages of an industrial lager fermentation. Appl Environ Microbiol 69:4777–4787Google Scholar
  61. Horak CE, Snyder M (2002) Global analysis of gene expression in yeast. Funct Integr Genomics 2:171–180Google Scholar
  62. Ivorra C, Perez-Ortin JE, del Olmo M (1999) An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnol Bioeng 64:698–708Google Scholar
  63. James TC, Campbell S, Donnelly D, Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432–448Google Scholar
  64. Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190:39–44Google Scholar
  65. Jespersen L, Cesar LB, Meaden PG, Jakobsen M (1999) Multiple alpha-glucoside transporter genes in brewer’s yeast. Appl Environ Microbiol 65:450–456Google Scholar
  66. Jin YL, Speers RA, Paulson AT, Stewart RJ (2004) Effect of beta-glucans and process conditions on the membrane filtration performance of beer. J Am Soc Brew Chem 62:117–124Google Scholar
  67. Jones M, Pierce JS (1964) Absorption of amino acids from worts by yeasts. J Inst Brew 70:307–315Google Scholar
  68. Joubert R, Brignon P, Lehmann C, Monribot C, Gendre F et al (2000) Two-dimensional gel analysis of the proteome of lager brewing yeasts. Yeast 16:511–522Google Scholar
  69. Joubert R, Strub JM, Zugmeyer S, Kobi D, Carte N et al (2001) Identification by mass spectrometry of two-dimensional gel electrophoresis-separated proteins extracted from lager brewing yeast. Electrophoresis 22:2969–2982Google Scholar
  70. Katou T, Namise M, Kitagaki H, Akao T, Shimoi H (2009) QTL mapping of sake brewing characteristics of yeast. J Biosci Bioeng 107:383–393Google Scholar
  71. Kobayashi O, Hayashi N, Kuroki R, Sone H (1998) Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 180:6503–6510Google Scholar
  72. Kobi D, Zugmeyer S, Potier S, Jaquet-Gutfreund L (2004) Two-dimensional protein map of an “ale”-brewing yeast strain: proteome dynamics during fermentation. FEMS Yeast Res 5:213–230Google Scholar
  73. Koch R (1881) Zur Untersuchung von pathogenen Organismen. Mittheilungen aus dem kaiserlichen Gesundheitsamte, pp 1–48Google Scholar
  74. Kodama Y, Omura F, Ashikari T (2001) Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease. Appl Environ Microbiol 67:3455–3462Google Scholar
  75. Kurtzman CP (2003) Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res 4:233–245Google Scholar
  76. Lancashire W, Carter A, Howard J, Wilde R (1989) Superattenuating brewing yeast. Proc 22nd Congr Eur Brew Conv Zürich, Oxford University Press, Oxford pp 491–496Google Scholar
  77. Lee YT, Bamforth CW (2009) Variations in solubility of barley beta-glucan during malting and impact on levels of beta-glucan in wort and beer. J Am Soc Brew Chem 67:67–71Google Scholar
  78. Linko M, Kronlöf J (1991) Main fermentation with immobilized yeast. Proc 23rd Congr Eur Brew Conv, Lisbon, Oxford University Press, Oxford pp 353–360Google Scholar
  79. Liti G, Carter DM, Moses AM, Warringer J, Parts L et al (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341Google Scholar
  80. Liu XF, Wang ZY, Wang JJ, Lu Y, He XP et al (2009) Expression of GAI gene and disruption of PEP4 gene in an industrial brewer's yeast strain. Lett Appl Microbiol 49:117–123Google Scholar
  81. MacAlpine DM, Perlman PS, Butow RA (2000) The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway. EMBO J 19:767–775Google Scholar
  82. Malcorps P, Dufour JP (1992) Short-chain and medium-chain aliphatic ester synthesis in Saccharomyces cerevisiae. Eur J Biochem 210:1015–1022Google Scholar
  83. Marullo P, Aigle M, Bely M, Masneuf-Pomarede I, Durrens P et al (2007) Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res 7:941–952Google Scholar
  84. Meaden PG, Tubb RS (1985) A plasmid vector system for the genetic manipulation of brewing strains. Proc 20th Congr Eur Brew Conv Helsinki, Oxford University Press, Oxford pp 219–226Google Scholar
  85. Minato T, Yoshida S, Ishiguro T, Shimada E, Mizutani S et al (2009) Expression profiling of the bottom fermenting yeast Saccharomyces pastorianus orthologous genes using oligonucleotide microarrays. Yeast 26:147–165Google Scholar
  86. Mizuno A, Tabei H, Iwahuti M (2006) Characterization of low-acetic-acid-producing yeast isolated from 2-deoxyglucose-resistant mutants and its application to high-gravity brewing. J Biosci Bioeng 101:31–37Google Scholar
  87. Nakao Y, Kodama Y, Shimonaga T (2007) Gene expression analysis of lager brewing yeast under different oxygenation condition using newly developed DNA microarray. Proc 31th Congr Eur Brew Conv Venice, Oxford University Press, Oxford pp 406–419Google Scholar
  88. Nakao Y, Kanamori T, Itoh T, Kodama Y, Rainieri S et al (2009) Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Res 16:115–129Google Scholar
  89. Naumov GI, James SA, Naumova ES, Louis EJ, Roberts IN (2000) Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Syst Evol Microbiol 50:1931–1942Google Scholar
  90. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412Google Scholar
  91. Nevoigt E, Pilger R, Mast-Gerlach E, Schmidt U, Freihammer S et al (2002) Genetic engineering of brewing yeast to reduce the content of ethanol in beer. FEMS Yeast Res 2:225–232Google Scholar
  92. Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U et al (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72:5266–5273Google Scholar
  93. Nevoigt E, Fischer C, Mucha O, Matthaus F, Stahl U et al (2007) Engineering promoter regulation. Biotechnol Bioeng 96:550–558Google Scholar
  94. Olesen K, Felding T, Gjermansen C, Hansen J (2002) The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation. FEMS Yeast Res 2:563–573Google Scholar
  95. Omura F (2008) Targeting of mitochondrial Saccharomyces cerevisiae Ilv5p to the cytosol and its effect on vicinal diketone formation in brewing. Appl Microbiol Biotechnol 78:503–513Google Scholar
  96. Omura F, Fujita A, Miyajima K, Fukui N (2005) Engineering of yeast Put4 permease and its application to lager yeast for efficient proline assimilation. Biosci Biotechnol Biochem 69:1162–1171Google Scholar
  97. Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50Google Scholar
  98. Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE et al (2009) Direct RNA sequencing. Nature 461:814–818Google Scholar
  99. Park CS, Park YJ, Lee YH, Park KJ, Kang HS et al (1990) The novel genetic manipulation to improve the plasmid stability and enzyme activity in the recombinant brewing yeast. Tech Q Master Brew Assoc Am 17:112–116Google Scholar
  100. Pasteur ML (1876) Études sur la bière: ses maladies, causes qui les provoquent, procédé pour la rendre inaltérable; avec une theorie nouvelle de la fermentation. Gauthier-Villars, ParisGoogle Scholar
  101. Perry C, Meaden P (1988) Properties of a genetically engineered dextrin-fermenting strain of brewer’s yeast. J Inst Brew 94:64Google Scholar
  102. Petersen JGL, Kiellandbrandt MC, Holmberg S, Nilsson-Tillgren T (1983) Mutational analysis of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Mapping of ilv2 and ilv5. Carlsberg Res Comm 48:21–34Google Scholar
  103. Piddocke MP, Kreisz S, Heldt-Hansen HP, Nielsen KF, Olsson L (2009) Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Appl Microbiol Biotechnol 84:453–464Google Scholar
  104. Pope GA, MacKenzie DA, Defernez M, Aroso MA, Fuller LJ et al (2007) Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24:667–679Google Scholar
  105. Querol A, Bond U (2009) The complex and dynamic genomes of industrial yeasts. FEMS Microbiol Lett 293:1–10Google Scholar
  106. Rainieri S, Kodama Y, Kaneko Y, Mikata K, Nakao Y et al (2006) Pure and mixed genetic lines of Saccharomyces bayanus and Saccharomyces pastorianus and their contribution to the lager brewing strain genome. Appl Environ Microbiol 72:3968–3974Google Scholar
  107. Ryder DS, Masschelein CA (1985) The growth process of brewing yeast and the biotechnological challenge. J Am Soc Brew Chem 43:66–75Google Scholar
  108. Sakai K, Fukui S, Yabuuchi S, Aoyagi S, Tsumura Y (1989) Expression of the Saccharomyces diastaticus STA1 gene in brewing yeasts. J Amer Soc Brew Chem 47:87–91Google Scholar
  109. Sato M, Kishimoto M, Watari J, Takashio M (2002) Breeding of brewer’s yeast by hybridization between a top-fermenting yeast Saccharomyces cerevisiae and a cryophilic yeast Saccharomyces bayanus. J Biosci Bioeng 93:509–511Google Scholar
  110. Sauer U, Schlattner U (2004) Inverse metabolic engineering with phosphagen kinase systems improves the cellular energy state. Metab Eng 6:220–228Google Scholar
  111. Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458:342–345Google Scholar
  112. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18Google Scholar
  113. Scott JA, Huxtable SM (1995) Removal of alcohol from beverages. J Appl Bacteriol 79:19–28Google Scholar
  114. Smart KA (2007) Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation. Yeast 24:993–1013Google Scholar
  115. Sone H, Fujii T, Kondo K, Shimizu F, Tanaka J et al (1988) Nucleotide sequence and expression of the Enterobacter aerogenes alpha-acetolactate decarboxylase gene in brewer’s yeast. Appl Environ Microbiol 54:38–42Google Scholar
  116. Stratford M (1992) Yeast flocculation: a new perspective. Adv Microb Physiol 33:2–71Google Scholar
  117. Tamai Y, Momma T, Yoshimoto H, Kaneko Y (1998) Co-existence of two types of chromosome in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 14:923–933Google Scholar
  118. Tamai Y, Tanaka K, Umemoto N, Tomizuka K, Kaneko Y (2000) Diversity of the HO gene encoding an endonuclease for mating-type conversion in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 16:1335–1343Google Scholar
  119. Teresa Fernandez-Espinar M, Barrio E, Querol A (2003) Analysis of the genetic variability in the species of the Saccharomyces sensu stricto complex. Yeast 20:1213–1226Google Scholar
  120. Tezuka H, Mori T, Okumura Y, Kitabatake K, Tsumura Y (1992) Cloning of a gene suppressing hydrogen sulfide production by Saccharomyces cerevisiae and its expression in a brewing yeast. J Am Soc Brew Chem 50:130–133Google Scholar
  121. Urano N, Sahara H, Koshino S (1993) Conversion of a non-flocculent brewer’s yeast to flocculent ones by electrofusion. I: Identification and characterization of the fusants by pulsed field gel electrophoresis. J Biotechnol 28:237–247Google Scholar
  122. Vakeria D, Hinchliffe E (1989) Amylolytic brewing yeast: their commercial and legislative acceptability. Proc 22nd Congr Eur Brew Conv, Zürich, Oxford University Press, Oxford pp 475–482Google Scholar
  123. Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ et al (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9:178–190Google Scholar
  124. Vandenbol M, Jauniaux JC, Grenson M (1989) Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases. Gene 83:153–159Google Scholar
  125. Vanoni M, Sollitti P, Goldenthal M, Marmur J (1989) Structure and regulation of the multigene family controlling maltose fermentation in budding yeast. Prog Nucleic Acid Res Mol Biol 37:281–322Google Scholar
  126. Vaughan-Martini A, Martini A (1987) Three newly delimited species of Saccharomyces sensu stricto. Antonie Van Leeuwenhoek 53:77–84Google Scholar
  127. Verbelen PJ, Depraetere SA, Winderickx J, Delvaux FR, Delvaux F (2009) The influence of yeast oxygenation prior to brewery fermentation on yeast metabolism and the oxidative stress response. FEMS Yeast Res 9:226–239Google Scholar
  128. Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15Google Scholar
  129. Verstrepen KJ, Derdelinckx G, Delvaux FR, Winderickx J, Thevelein JM et al (2001) Late fermentation expression of FLO1 in Saccharomyces cerevisiae. J Am Soc Brew Chem 59:69–76Google Scholar
  130. Verstrepen KJ, Derdelinckx G, Dufour JP, Winderickx J, Thevelein JM et al (2003a) Flavor-active esters: adding fruitiness to beer. J Biosci Bioeng 96:110–118Google Scholar
  131. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR (2003b) Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 61:197–205Google Scholar
  132. Verstrepen KJ, Van Laere SD, Vanderhaegen BM, Derdelinckx G, Dufour JP et al (2003c) Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Appl Environ Microbiol 69:5228–5237Google Scholar
  133. Vidgren V, Ruohonen L, Londesborough J (2005) Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains. Appl Environ Microbiol 71:7846–7857Google Scholar
  134. Vidgren V, Huuskonen A, Virtanen H, Ruohonen L, Londesborough J (2009) Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes. Appl Environ Microbiol 75:2333–2345Google Scholar
  135. Vogel J, Wackerbauer K, Stahl U (1995) Genetically modified food-safety issues. ACS symposium series 605. In: KH Engel, GR Takeoka, R Teranishi (ed) American Chemical Society, Washington, DC, p 160Google Scholar
  136. Wainwright T (1973) Diacetyl—a review. Part I—analytical and biochemical considerations; part II—brewing experience. J Inst Brew 79:451–470Google Scholar
  137. Wang SA, Bai FY (2008) Saccharomyces arboricolus sp nov., a yeast species from tree bark. Int J Syst Evol Microbiol 58:510–514Google Scholar
  138. Warner JR, Patnaik R, Gill RT (2009) Genomics enabled approaches in strain engineering. Curr Opin Microbiol 12:223–230Google Scholar
  139. Winzeler EA, Lee B, McCusker JH, Davis RW (1999) Whole genome genetic-typing in yeast using high-density oligonucleotide arrays. Parasitology 118:73–80Google Scholar
  140. Yamagishi H, Ogata T (1999) Chromosomal structures of bottom fermenting yeasts. Syst Appl Microbiol 22:341–353Google Scholar
  141. Yamano S, Kondo K, Tanaka J, Inoue T (1994a) Construction of a brewer’s yeast having [alpha]-acetolactate decarboxylase gene from Acetobacter aceti ssp. xylinum integrated in the genome. J Biotechnol 32:173–178Google Scholar
  142. Yamano S, Tanaka J, Inoue T (1994b) Cloning and expression of the gene encoding alpha-acetolactate decarboxylase from Acetobacter aceti ssp. xylinum in brewer’s yeast. J Biotechnol 32:165–171Google Scholar
  143. Yocum R (1986) Genetic engineering of industrial yeasts. Proc Bio Expo 86. Butterworth, Stoneham, p 171Google Scholar
  144. Yoshida S, Hashimoto K, Shimada E, Ishiguro T, Minato T et al (2007) Identification of bottom-fermenting yeast genes expressed during lager beer fermentation. Yeast 24:599–606Google Scholar
  145. Yoshida S, Imoto J, Minato T, Oouchi R, Sugihara M et al (2008) Development of bottom-fermenting Saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Appl Environ Microbiol 74:2787–2796Google Scholar
  146. Yoshimoto H, Fujiwara D, Momma T, Ito C, Sone H et al (1998) Characterization of the ATF1 and Lg-ATF1 genes encoding alcohol acetyltransferases in the bottom fermenting yeast Saccharomyces pastorianus. J Ferment Bioeng 86:15–20Google Scholar
  147. Yoshioka K, Hashimoto N (1984) Acetyl-CoA of brewers yeast and formation of acetate esters. Agri Biol Chem 48:207–209Google Scholar
  148. Zufall C, Wackerbauer K (2000) Process engineering parameters for the dealcoholisation of beer by means of falling film evaporation and its influence on beer quality. Monatsschrift für Brauwissenschaft 53:124–137Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sofie M. G. Saerens
    • 1
    • 2
  • C. Thuy Duong
    • 4
  • Elke Nevoigt
    • 2
    • 3
    • 5
  1. 1.VIB Lab for Systems Biology & CMPG Lab for Genetics and GenomicsKULeuven/University of Louvain, Bio-IncubatorLeuvenBelgium
  2. 2.Laboratory of Molecular Cell Biology, Institute of Botany and MicrobiologyKatholieke Universiteit LeuvenLeuven-HeverleeBelgium
  3. 3.Department of Molecular MicrobiologyVIBLeuven-HeverleeBelgium
  4. 4.Department of Microbiology and GeneticsBerlin University of TechnologyBerlinGermany
  5. 5.School of Engineering and ScienceJacobs University gGmbHBremenGermany

Personalised recommendations