Applied Microbiology and Biotechnology

, Volume 87, Issue 2, pp 583–593

Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production

  • Steffen N. Lindner
  • Henrike Niederholtmeyer
  • Katja Schmitz
  • Siegfried M. Schoberth
  • Volker F. Wendisch
Biotechnologically Relevant Enzymes and Proteins


Nicotinamide adenine dinucleotide phosphate (NADP) is synthesized by phosphorylation of either oxidized or reduced nicotinamide adenine dinucleotide (NAD/NADH). Here, the cg1601/ppnK gene product from Corynebacterium glutamicum genome was purified from recombinant Escherichia coli and enzymatic characterization revealed its activity as a polyphosphate (PolyP)/ATP-dependent NAD kinase (PPNK). PPNK from C. glutamicum was shown to be active as homotetramer accepting PolyP, ATP, and even ADP for phosphorylation of NAD. The catalytic efficiency with ATP as phosphate donor for phosphorylation of NAD was higher than with PolyP. With respect to the chain length of PolyP, PPNK was active with short-chain PolyPs. PPNK activity was independent of bivalent cations when using ATP, but was enhanced by manganese and in particular by magnesium ions. When using PolyP, PPNK required bivalent cations, preferably manganese ions, for activity. PPNK was inhibited by NADP and NADH at concentrations below millimolar. Overexpression of ppnK in C.glutamicum wild type slightly reduced growth and ppnK overexpression in the lysine producing strain DM1729 resulted in a lysine product yield on glucose of 0.136 ± 0.006 mol lysine (mol glucose)−1, which was 12% higher than that of the empty vector control strain.


Polyphosphate NAD kinase Corynebacterium Lysine production 


  1. Abe S, Takayarna K, Kinoshita S (1967) Taxonomical studies on glutamic acid producing bacteria. J Gen Appl Microbiol 13:279–301CrossRefGoogle Scholar
  2. Ando S, Ochiai K, Yokoi H, Hashimoto S, Yonetani Y (2002) Novel glucose-6-phosphate dehydrogenase. Patent WO0198472 (2002-01-02)Google Scholar
  3. Antelmann H, Scharf C, Hecker M (2000) Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol 182:4478–4490CrossRefGoogle Scholar
  4. Bakali HM, Herman MD, Johnson KA, Kelly AA, Wieslander A, Hallberg BM, Nordlund P (2007) Crystal structure of YegS, a homologue to the mammalian diacylglycerol kinases, reveals a novel regulatory metal binding site. J Biol Chem 282:19644–19652CrossRefGoogle Scholar
  5. Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109CrossRefGoogle Scholar
  6. Berrin JG, Pierrugues O, Brutesco C, Alonso B, Montillet JL, Roby D, Kazmaier M (2005) Stress induces the expression of AtNADK-1, a gene encoding a NAD(H) kinase in Arabidopsis thaliana. Mol Genet Genomics 273:10–19CrossRefGoogle Scholar
  7. Börmann ER, Eikmanns BJ, Sahm H (1992) Molecular analysis of the Corynebacterium glutamicum gdh gene-encoding glutamate dehydrogenase. Mol Microbiol 6:317–326CrossRefGoogle Scholar
  8. Butler JR, McGuinness ET (1982) Candida utilis NAD+ kinase: purification, properties and affinity gel studies. Int J Biochem 14:839–844CrossRefGoogle Scholar
  9. Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC (2005) NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Mol Biol 59:553–564CrossRefGoogle Scholar
  10. Cremer J, Treptow C, Eggeling L, Sahm H (1988) Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum. J Gen Microbiol 134:3221–3229Google Scholar
  11. Docampo R (2006) Acidocalcisomes and polyphosphate granules. In: Shively JM (ed) Inclusions in prokaryotes vol 1. Springer, Berlin Germany, pp 53–70CrossRefGoogle Scholar
  12. Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102CrossRefGoogle Scholar
  13. Eggeling L, Bott M (eds) (2005) Handbook of Corynebacterium glutamicum. CRC Press LLC, Boca RatonGoogle Scholar
  14. Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177:774–782Google Scholar
  15. Garavaglia S, Galizzi A, Rizzi M (2003) Allosteric regulation of Bacillus subtilis NAD kinase by quinolinic acid. J Bacteriol 185:4844–4850CrossRefGoogle Scholar
  16. Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1, 6-bisphosphatase. Metab Eng 7:291–301CrossRefGoogle Scholar
  17. Gourdon P, Baucher MF, Lindley ND, Guyonvarch A (2000) Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987CrossRefGoogle Scholar
  18. Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning: a practical approach, vol 1. IRL Press, Oxford, pp 109–135Google Scholar
  19. Hoischen C, Kramer R (1989) Evidence for an efflux carrier system involved in the secretion of glutamate by Corynebacterium glutamicum. Arch Microbiol 151:342–347CrossRefGoogle Scholar
  20. Ishige T, Krause M, Bott M, Wendisch VF, Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185:4519–4529CrossRefGoogle Scholar
  21. Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75:47–53CrossRefGoogle Scholar
  22. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25CrossRefGoogle Scholar
  23. Kawai S, Mori S, Mukai T, Suzuki S, Yamada T, Hashimoto W, Murata K (2000) Inorganic Polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem Biophys Res Commun 276:57–63CrossRefGoogle Scholar
  24. Kawai S, Mori S, Mukai T, Hashimoto W, Murata K (2001a) Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem 268:4359–4365CrossRefGoogle Scholar
  25. Kawai S, Suzuki S, Mori S, Murata K (2001b) Molecular cloning and identification of UTR1 of a yeast Saccharomyces cerevisiae as a gene encoding an NAD kinase. FEMS Microbiol Lett 200:181–184CrossRefGoogle Scholar
  26. Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM (2006) Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:1099–1106CrossRefGoogle Scholar
  27. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JF, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678–4683CrossRefGoogle Scholar
  28. Kocan M, Schaffer S, Ishige T, Sorger-Herrmann U, Wendisch VF, Bott M (2006) Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol 188:724–732CrossRefGoogle Scholar
  29. Kornberg A (1950) Enzymatic synthesis of triphosphopyridine nucleotide. J Biol Chem 182:805–813Google Scholar
  30. Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125CrossRefGoogle Scholar
  31. Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates, 2nd edn. Wiley, ChichesterGoogle Scholar
  32. Lerner F, Niere M, Ludwig A, Ziegler M (2001) Structural and functional characterization of human NAD kinase. Biochem Biophys Res Commun 288:69–74CrossRefGoogle Scholar
  33. Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF (2007) NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum. Appl Environ Microbiol 73:5026–5033CrossRefGoogle Scholar
  34. Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF (2009) Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum. Appl Environ Microbiol 75:3161–3170CrossRefGoogle Scholar
  35. Liu J, Lou Y, Yokota H, Adams PD, Kim R, Kim SH (2005) Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP. J Mol Biol 354:289–303CrossRefGoogle Scholar
  36. Marx A, Hans S, Mockel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O’Donohue M, Dunican LK (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197CrossRefGoogle Scholar
  37. Mattson G, Conklin E, Desai S, Nielander G, Savage MD, Morgensen S (1993) A practical approach to crosslinking. Mol Biol Rep 17:167–183CrossRefGoogle Scholar
  38. McGuinness ET, Butler JR (1985) NAD+ kinase—a review. Int J Biochem 17:1–11CrossRefGoogle Scholar
  39. Mori S, Kawai S, Shi F, Mikami B, Murata K (2005a) Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution. J Biol Chem 280:24104–24112CrossRefGoogle Scholar
  40. Mori S, Yamasaki M, Maruyama Y, Momma K, Kawai S, Hashimoto W, Mikami B, Murata K (2005b) NAD-binding mode and the significance of intersubunit contact revealed by the crystal structure of Mycobacterium tuberculosis NAD kinase-NAD complex. Biochem Biophys Res Commun 327:500–508CrossRefGoogle Scholar
  41. Moritz B, Striegel K, De Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem 267:3442–3452CrossRefGoogle Scholar
  42. Moritz B, Striegel K, de Graaf AA, Sahm H (2002) Changes of pentose phosphate pathway flux in vivo in Corynebacterium glutamicum during leucine-limited batch cultivation as determined from intracellular metabolite concentration measurements. Metab Eng 4:295–305CrossRefGoogle Scholar
  43. Ochiai A, Mori S, Kawai S, Murata K (2004) Overexpression, purification, and characterization of ATP-NAD kinase of Sphingomonas sp. A1. Protein Expr Purif 36:124–130CrossRefGoogle Scholar
  44. Omumasaba CA, Okai N, Inui M, Yukawa H (2004) Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J Mol Microbiol Biotechnol 8:91–103CrossRefGoogle Scholar
  45. Outten CE, Culotta VC (2003) A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. Embo J 22:2015–2024CrossRefGoogle Scholar
  46. Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM (2005) Formation of volutin granules in Corynebacterium glutamicum. FEMS Microbiol Lett 243:133–140CrossRefGoogle Scholar
  47. Patek M, Bilic M, Krumbach K, Eikmanns B, Sahm H, Eggeling L (1997) Identification and transcriptional analysis of the dapB-ORF2-dapA-ORF4 operon of Corynebacterium glutamicum, encoding two enzymes involved in l-lysine synthesis. Biotechnol Lett 19:1113CrossRefGoogle Scholar
  48. Pollak N, Dolle C, Ziegler M (2007) The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem J 402:205–218CrossRefGoogle Scholar
  49. Raffaelli N, Finaurini L, Mazzola F, Pucci L, Sorci L, Amici A, Magni G (2004) Characterization of Mycobacterium tuberculosis NAD kinase: functional analysis of the full-length enzyme by site-directed mutagenesis. Biochemistry 43:7610–7617CrossRefGoogle Scholar
  50. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  51. Sakuraba H, Kawakami R, Ohshima T (2005) First archaeal inorganic polyphosphate/ATP-dependent NAD kinase, from hyperthermophilic archaeon Pyrococcus horikoshii: cloning, expression, and characterization. Appl Environ Microbiol 71:4352–4358CrossRefGoogle Scholar
  52. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  53. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84CrossRefGoogle Scholar
  54. Schaaf S, Bott M (2007) Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. J Bacteriol 189:5002–5011CrossRefGoogle Scholar
  55. Schröder HC, Müller WEG (1999) (ed) Inorganic polyphosphates: biochemistry, biology, biotechnology. Progress in molecular and subcellular biology, vol. 23. Springer, Berlin, GermanyGoogle Scholar
  56. Shi F, Kawai S, Mori S, Kono E, Murata K (2005) Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae. Febs J 272:3337–3349CrossRefGoogle Scholar
  57. Shimizu H, Hirasawa T (2007) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, HeidelbergGoogle Scholar
  58. Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928CrossRefGoogle Scholar
  59. Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC (2003) POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot Cell 2:809–820CrossRefGoogle Scholar
  60. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130CrossRefGoogle Scholar
  61. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  62. Turner WL, Waller JC, Vanderbeld B, Snedden WA (2004) Cloning and characterization of two NAD kinases from Arabidopsis. identification of a calmodulin binding isoform. Plant Physiol 135:1243–1255CrossRefGoogle Scholar
  63. Wellerdiek M, Winterhoff D, Reule W, Brandner J, Oldiges M (2009) Metabolic quenching of Corynebacterium glutamicum: efficiency of methods and impact of cold shock. Bioprocess Biosyst Eng 32:581–592CrossRefGoogle Scholar
  64. Wendisch VF, Bott M (2008) Phosphorus metabolism and its regulation. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic Press, Norfolk, pp 203–216Google Scholar
  65. Wittmann C, Becker J (2007) The l-lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, HeidelbergGoogle Scholar
  66. Wittmann C, Kim HM, Heinzle E (2004) Metabolic network analysis of lysine producing Corynebacterium glutamicum at a miniaturized scale. Biotechnol Bioeng 87:1–6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Steffen N. Lindner
    • 1
  • Henrike Niederholtmeyer
    • 1
  • Katja Schmitz
    • 1
  • Siegfried M. Schoberth
    • 2
  • Volker F. Wendisch
    • 3
  1. 1.Institute of Molecular Microbiology and BiotechnologyWestfalian Wilhelms University MuensterMuensterGermany
  2. 2.Institut für Biotechnologie 1, Forschungszentrum JülichJülichGermany
  3. 3.Chair of Genetics ProkaryotesBielefeld UniversityBielefeldGermany

Personalised recommendations