Advertisement

Applied Microbiology and Biotechnology

, Volume 87, Issue 1, pp 195–203 | Cite as

Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran

  • Kofi Abokitse
  • Meiqun Wu
  • Hélène Bergeron
  • Stephan Grosse
  • Peter C. K. LauEmail author
Biotechnologically Relevant Enzymes and Proteins

Abstract

A putative α/β hydrolase fold-encoding gene (locus tag TTE1809) from the genome of Thermoanaerobacter tengcongensis was cloned and expressed in Escherichia coli as a possible source of thermostable feruloyl esterase (FAE) for the production of antioxidant phenolic acids from biomass. Designated as TtFAE, the 33-kDa protein was purified to apparent homogeneity. The lipase-like sequence characteristics of TtFAE and its substrate specificity towards methyl ferulate, methyl sinapate, and methyl p-coumarate classify it as a new member of the type A FAEs. At 75°C, the enzyme retained at least 95% of its original activity for over 80 min; at 80°C, its half-life was found to be 50 min, rendering TtFAE a highly thermostable protein. Under different hydrolytic conditions, ferulic acid (FA) was shown to be released from feruloylated oligosaccharides prepared from triticale bran. An estimated recovery of 68 mg FA/100 g triticale bran was demonstrated by a 30% release of the total FA from triticale bran within a 5-h incubation period. Both the oxygen radical absorbing capacity values of the feruloylated oligosaccharides and free FA were also determined. Overall, this work introduces a new bacterial member to the growing family of plant cell wall degrading FAEs that at present is largely of fungal origin, and it benchmarks the bioproduction of FA from triticale bran.

Keywords

Biorefinery Platform chemicals Antioxidant Phenolic acid ORAC Genome mining 

Notes

Acknowledgements

K.A. and M.W. are supported by funding through the Canadian Triticale Biorefinery Initiative (CTBI) of the Agricultural Bioproducts Innovation Program of Agriculture and Agri-Food Canada. M. Wellisch is gratefully acknowledged for setting the stage for the CTBI collaboration. We thank A. Corriveau, S. Deschamps, and C. Beaulieu for their expert help in various analytical analyses, and A. Matte and H. Leisch for suggestions and help with the manuscript.

Supplementary material

253_2010_2441_MOESM1_ESM.doc (147 kb)
ESM 1 (DOC 147 kb)

References

  1. Akin DE, Rigsby LL (2008) Corn fiber: structure, composition, and response to enzymes for fermentable sugars and coproducts. Appl Biochem Biotechnol 144:59–68CrossRefGoogle Scholar
  2. Aliwan FO, Kroon PA, Faulds CB, Pickersgill R, Williamson G (1999) Ferulic acid esterase-III from Aspergillus niger does not exhibit lipase activity. J Sci Food Agric 79:457–459CrossRefGoogle Scholar
  3. Aurilia V, Parracino A, D'Auria S (2008) Microbial carbohydrate esterases in cold adapted environments. Gene 410:234–240CrossRefGoogle Scholar
  4. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203CrossRefGoogle Scholar
  5. Bao Q, Tian Y, Li W, Xu Z, Xuan Z, Hu S, Dong W, Yang J, Chen Y, Xue Y, Xu Y, Lai X, Huang L, Dong X, Ma Y, Ling L, Tan H, Chen R, Yang H (2002) A complete sequence of the T. tengcongensis genome. Genome Res 12:689–700CrossRefGoogle Scholar
  6. Barberousse H, Roiseux O, Robert C, Paquot M, Deroanne C, Blecker C (2008) Analytical methodologies for quantification of ferulic acid and its oligomers. J Sci Food Agric 88:1494–1511CrossRefGoogle Scholar
  7. Barberousse H, Kamoun A, Chaabouni M, Giet J-M, Roiseux O, Paquot M, Deroanne C, Blecker C (2009) Optimization of enzymatic extraction of ferulic acid from wheat bran, using response surface methodology, and characterization of the resulting fractions. J Sci Food Agric 89:1634–1641CrossRefGoogle Scholar
  8. Benoit I, Navarro D, Marnet N, Rakotomanomana N, Leasage-Messen L, Sigoilot JC, Asther M, Asther M (2006) Feruloyl esterases as a tool for the release of phenolic compounds. Carbohydr Res 341:1820–1827CrossRefGoogle Scholar
  9. Benoit I, Danchin EGJ, Bleichrodt RJ, de Vries RP (2008) Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 30:387–396CrossRefGoogle Scholar
  10. Blum DL, Kataeva IA, Li XL, Ljungdahl LG (2000) Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182:1346–1351CrossRefGoogle Scholar
  11. Bozell JJ (2008) Feedstocks for the future: biorenewable production of chemicals from renewable carbon. Clean 36:641–647Google Scholar
  12. Bunzel M (2009) Chemistry and occurrence of hydroxycinnamate oligomers. Phytochem Rev. doi: 10.1007/s11101-009-9139-3 Google Scholar
  13. Buranov AU, Mazza G (2009) Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chem 115:1542–1548CrossRefGoogle Scholar
  14. Caesar B (2008) More than just ethanol—factors driving industry growth. Ind Biotechnol 4:50–54CrossRefGoogle Scholar
  15. Cao G, Verdon CP, Wu AH, Wang H, Prior RL (1995) Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin Chem 41:1738–1744Google Scholar
  16. Carnachan SM, Harris PJ (2000) Ferulic acid is bound to the primary cell walls of all gymnosperm families. Biochem Syst Ecol 28:865–879CrossRefGoogle Scholar
  17. Chaplin MF (1986) Monosaccharides. In: Chaplin MF, Kennedy JF (eds) Carbohydrate analysis: a practical approach. Oxford University Press, USA, pp 1–36Google Scholar
  18. Crepin VF, Faulds CB, Connerton IF (2004) Functional classfication of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–653CrossRefGoogle Scholar
  19. Dalrymple BP, Swadling Y (1997) Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiol 143:1203–1210CrossRefGoogle Scholar
  20. Dalrymple BP, Swadling Y, Cybinski DH, Xue GP (1996) Cloning of a gene encoding cinnamoyl ester hydrolase form the ruminal bacterium Butyrivibrio fibrisolvens E14 by a novel method. FEMS Microbiol Lett 143:115–120CrossRefGoogle Scholar
  21. De Vries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RHH, Faulds CB, Williamson G, van den Hombergh JPTW, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63:4638–4644Google Scholar
  22. DeBoy RT, Mongodin EF, Fouts DE, Tailford LE, Khouri H, Emerson JB, Mohamoud Y, Watkins K, Henrissat B, Gilbert HJ, Nelson KE (2008) Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J Bacteriol 190:5455–5463CrossRefGoogle Scholar
  23. Dodd DR, Gross RA (2007) Chemicals from biomass. Science 318:125–1251CrossRefGoogle Scholar
  24. Dodd D, Kocherginskaya SA, Spies MA, Beery KE, Abaas CA, Mackie RI, Cann IKO (2009) Biochemical analysis of a β–D-xylosidase and a bifunctional xylanase-ferulic acid esterase from a xylanolytic gene cluster in Prevotella ruminicola 23. J Bacteriol 191:3328–3338CrossRefGoogle Scholar
  25. Fardeau ML, Bonilla Salinas M, L'Haridon S, Jeanthon C, Verhé F, Cayol JL, Patel BK, Garcia JL, Ollivier B (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474CrossRefGoogle Scholar
  26. Faulds CB, Bartolomé B, Williamson G (1997) Novel biotransformations of agro-industrial cereal waste by ferulic acid esterases. Ind Crops Prod 6:367–374CrossRefGoogle Scholar
  27. Faulds CB, Mandalari G, Lo Curto RB, Bisignano G, Christakopoulos P, Waldron KW (2006) Synergy between xylanases from glycoside hydrolase family 10 and family 11 and a feruloyl esterase in the release of phenolic acidc from cereal arabinoxylan. Appl Microbiol Biotechnol 71:622–629CrossRefGoogle Scholar
  28. Fazary AE, Ju YH (2007) Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim Biophys Sin 39:811–828CrossRefGoogle Scholar
  29. Ferreira LM, Wood TM, Williamson G, Faulds C, Hazlewood GP, Black GW, Gilbert HJ (1993) A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain. Biochem J 29:4349–4355Google Scholar
  30. Graf E (1992) Antioxidant potential of ferulic acid. Free Radic Biol Med 13:435–448CrossRefGoogle Scholar
  31. Grosse S, Bergeron H, Imura A, Boyd J, Wang S, Kubota K, Miyadera A, Sulea T, Lau PCK (2010) Nature versus nurture in two highly enantioselective esterases from Bacillus cereus and Thermoanaerobacter tengcongensis. Microbial Biotechnol 3:65–79CrossRefGoogle Scholar
  32. Hosseinian FS, Mazza G (2009) Triticale bran and straw: potential new sources of phenolic acids, proanthocyanidins, and lignans. J Functional Foods 1:57–64CrossRefGoogle Scholar
  33. Knoshaug EP, Selig MJ, Baker JO, Decker SR, Himmel ME, Adney WS (2008) Heterologous expression of two ferulic acid esterases from Penicillium funiculosum. Appl Biochem Biotechnol 146:79–87CrossRefGoogle Scholar
  34. Koseki T, Fushinobu S, Ardiansyah SH, Komai M (2009a) Occurrences, properties, and applications of feruloyl esterases. Appl Microbiol Biotechnol 84:803–810CrossRefGoogle Scholar
  35. Koseki T, Hori A, Seki S, Murayama T, Shiono Y (2009b) Characterization of two distinct feruloyl esterases, AoFaeB and AoFaeC, from Aspergillus oryzae. Appl Microbiol Biotechnol 83:689–696CrossRefGoogle Scholar
  36. Levasseur A, Gouret P, Lesage-Meessen L, Asther M, Record E, Pontarotti P (2006) Tracking the connection between evolutionary and functional shifts using the fungal lipase/feruloyl esterase A family. BMC Evol Biol 6:92CrossRefGoogle Scholar
  37. Mathew S, Abraham TE (2006) Bioconversions of ferulic acid, an hydroxycinnamic acid. Crit Rev Microbiol 32:115–125CrossRefGoogle Scholar
  38. Micard V, Renard MGC, Thibault JF (1994) Studies on enzymic release of ferulic acid from sugar-beet pulp. Lenbensm Wiss u Technol 27:59–66CrossRefGoogle Scholar
  39. Moukouli M, Topakas E, Christakopoulos P (2008) Cloning, characterization and functional expression of an alkalitolerant type C feruloyl esterase from Fusarium oxysporum. Appl Microbiol Biotechnol 79:245–254CrossRefGoogle Scholar
  40. Mukherjee G, Singh RK, Mitra A, Sen SK (2007) Ferulic acid esterase production by Streptomyces sp. Bioresour Technol 98:211–213CrossRefGoogle Scholar
  41. Oettler G (2005) The fortune of a botanical curiosity—triticale: past, present and future. J Agric Sci 143:329–346CrossRefGoogle Scholar
  42. Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269CrossRefGoogle Scholar
  43. Panagiotou G, Olavarria R, Olsson L (2007) Penicillium brasilianum as an enzyme factory: the esential role of feruloyl esterases for the hydrolysis of the plant cell wall. J Biotechnol 130:219–228CrossRefGoogle Scholar
  44. Rashamuse KJ, Burton SG, Cowan DA (2007) A novel recombinant ethyl ferulate esterase from Burkholderia multivorans. J Appl Microbiol 103:1610–1620CrossRefGoogle Scholar
  45. Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B (1995) Biocatalytic transformations of ferulic acids: an abundant aromatic natural product. J Ind Microbiol 15:457–471CrossRefGoogle Scholar
  46. Royter M, Schmidt M, Elend C, Höbenreich H, Schäfer T, Bornscheuer UT, Antranikian G (2009) Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles 13:769–783CrossRefGoogle Scholar
  47. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  48. Saulnier L, Vigouroux J, Thibault JF (1995) Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272:241–253CrossRefGoogle Scholar
  49. Shin H-D, Chen RR (2006) Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme Microb Technol 38:478–485CrossRefGoogle Scholar
  50. Shin H-D, McClendon S, Le T, Taylor F, Chen RR (2006) A complete enzymatic recovery of ferulic acid from corn residues with extracellular enzymes from Neosartorya spinosa NRRL 185. Biotechnol Bioeng 95:1108–1115CrossRefGoogle Scholar
  51. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  52. Surinenaite B, Bendikiene V, Juodka B, Bachmatova I, Marinkevichiene L (2002) Characterization and physicochemical properties of a lipase from Pseudomonas mendocina 3121-1. Biotechnol Appl Biochem 36:47–55CrossRefGoogle Scholar
  53. Tilay A, Bule M, Kishenkumar J, Annapure U (2008) Preparation of ferulic acid form agricultural wastes: its improved extraction and purification. J Agric Food Chem 56:7644–7648CrossRefGoogle Scholar
  54. Topakas E, Vafiadi C, Christakopoulos P (2007) Microbial production, characterization and applications of feruloyl esterases. Process Biochem 42:497–509CrossRefGoogle Scholar
  55. Torre P, Aliakbarian B, Rivas B, Dominguez JM, Converti A (2008) Release of ferulic acid fron corn cobs by alkaline hydrolysis. Biochem Eng J 40:500–506CrossRefGoogle Scholar
  56. Vieites JM, Ghazi A, Beloqui A, Polaina J, Andreu JM, Golyshina OV, Nechitayio TY, Waliczek A, Yakimov MM, Golyshin PN, Ferrer M (2010) Inter-conversion of catalytic abilities in a bifunctional carboxy/feruloyl-esterase from earthworm gut metagenome. Microbial Biotechnol 3:48–58CrossRefGoogle Scholar
  57. Waldron KW, Selvendran RR (1990) Composition of the cell walls of different asparagus (Asparagus officinalis) tissues. Physiol Plant 80:568–575CrossRefGoogle Scholar
  58. Werpy T, Peterson G (2004) Top value added chemicals from biomass, volume I: results of screening for potential candidate from sugars and synthesis gas. US Department of Energy, Washington, DC. http://www.nrel.gov/docs/fy04osti/35523.pdf
  59. Wong DWS (2006) Feruloyl esterase: a key enzyme in biomass degradation. Appl Biochem Biotechnol 133:87–112CrossRefGoogle Scholar
  60. Xiros C, Moukouli M, Topakas E, Christakopoulous (2009) Factors affecting ferulic acid release from Brewer's spent grain by Fusarium oxysporum enzymatic system. Bioresour Technol 100:5917–5921Google Scholar
  61. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119CrossRefGoogle Scholar
  62. Yu L (2008) Wheat antioxidants. Wiley, Hoboken, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Kofi Abokitse
    • 1
  • Meiqun Wu
    • 1
  • Hélène Bergeron
    • 1
  • Stephan Grosse
    • 1
  • Peter C. K. Lau
    • 1
    Email author
  1. 1.Biotechnology Research InstituteNational Research Council CanadaMontrealCanada

Personalised recommendations