Applied Microbiology and Biotechnology

, Volume 86, Issue 5, pp 1387–1397

Use of sustainable chemistry to produce an acyl amino acid surfactant

  • Gabriel O. Reznik
  • Prashanth Vishwanath
  • Michelle A. Pynn
  • Joy M. Sitnik
  • Jeffrey J. Todd
  • Jun Wu
  • Yan Jiang
  • Brendan G. Keenan
  • Andrew B. Castle
  • Richard F. Haskell
  • Temple F. Smith
  • Ponisseril Somasundaran
  • Kevin A. Jarrell
Biotechnological Products and Process Engineering

Abstract

Surfactants find wide commercial use as foaming agents, emulsifiers, and dispersants. Currently, surfactants are produced from petroleum, or from seed oils such as palm or coconut oil. Due to concerns with CO2 emissions and the need to protect rainforests, there is a growing necessity to manufacture these chemicals using sustainable resources In this report, we describe the engineering of a native nonribosomal peptide synthetase pathway (i.e., surfactin synthetase), to generate a Bacillus strain that synthesizes a highly water-soluble acyl amino acid surfactant, rather than the water insoluble lipopeptide surfactin. This novel product has a lower CMC and higher water solubility than myristoyl glutamate, a commercial surfactant. This surfactant is produced by fermentation of cellulosic carbohydrate as feedstock. This method of surfactant production provides an approach to sustainable manufacturing of new surfactants.

Keywords

Surfactant NRPS engineering Sustainable chemistry Acyl amino acid Combinatorial synthesis 

References

  1. Acmite Market Intelligence (2008) World surfactant market: markets, products, applications, innovations, chances & risks, competition, prospects to 2015. Ratingen, GermanyGoogle Scholar
  2. Amidon T, Liu S (2009) Water-based woody biorefinery. Biotech Adv 27:542–550CrossRefGoogle Scholar
  3. Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746Google Scholar
  4. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophy Res 31:488–494CrossRefGoogle Scholar
  5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can Biochem Physiol 37(8):911–917Google Scholar
  6. Cooper D, Macdonald C, Duff J, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microb 42:408–412Google Scholar
  7. Danielson F, Beukema H, Burgess N, Parish F, Bruhl C, Donald P et al (2009) Biofuel plantations on forested lands: double jeopardy for diversity and climate. Conserv Biol 23:348–358CrossRefGoogle Scholar
  8. Donahue WF, Turczyk BM, Jarrell KA (2002) Rapid gene cloning using terminator primers and modular vectors. Nucleic Acids Res 30:e95CrossRefGoogle Scholar
  9. Fabret C, Ehrlich S, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46:25–36CrossRefGoogle Scholar
  10. Fitzherbert E, Struebig M, Morel A, Danielsen F, Ca B, Donald P et al (2008) How will palm oil expansion affect biodiversity? Trends Ecol Evol 23:538–545CrossRefGoogle Scholar
  11. Hamoen L, Eshuis H, Jongbloed J, Venema G, van Sinderen D (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activating domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15(1):55–63CrossRefGoogle Scholar
  12. Husmann M, Menting K, Rieckert H, Ring H, Wiesse J, Zinser W (2004) Secondary fatty acid amide derivatives: amino-acid based surfactants for household, industrial and personal care applications. SÖFW Journal 130:22–28Google Scholar
  13. Infante M, Pérez L, Pinazo A, Clapés P, Morán M-C (2003) Amino acid-based surfactants. In: Holmberg K (ed) Novel surfactants: preparation applications and biodegradability (Surfactant Science series Vol. 114. Marcel Dekker, New York, NY, pp 193–216Google Scholar
  14. Kakinuma A, Sugino H, Isono M, Tamura G, Arima K (1969) Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric Biol Chem 33:973–976Google Scholar
  15. Kleinkauf H, Von Döhren H (1996) A nonribosomal system of peptide biosynthesis. Eur J Biochem 236:335–351CrossRefGoogle Scholar
  16. Levison MI (2009) Surfactant production:present realities and future perspectives. In: Zoller U (ed) Handbook of detergents part F: production, vol 142. CRC, Boca Raton, FL, pp 1–38Google Scholar
  17. Mielenz J, Bardsley J, Wyman CE (2009) Fermentation of soyhulls to ethanol while preserving protein value. Bioresource Technol 100:3532–3539CrossRefGoogle Scholar
  18. Mukherjee S, Das P, Sen R (2006) Toward commercial production of microbial surfactants. Trends Biotechnol 24:509–515CrossRefGoogle Scholar
  19. Nnanna I, Cheng G, Xia J (2001) Potential applications of protein-based surfactants. In: Nnanna I, Xia J (eds) Protein-based surfactants; synthesis: physicochemical properties, and applications (surfactant science series), vol 101, pp. Marcel Dekker, New York, NY, pp 227–260Google Scholar
  20. Noah KS, Fox SL, Bruhn DF, Thompson DN, Bala GA (2002) Development of continuous surfactin production from potato process effluent by Bacillus subtilis in an airlift reactor. Appl Biochem Biotech 98–100:803–813CrossRefGoogle Scholar
  21. Patel M (2004) Surfactants based on renewable raw materials: carbon dioxide reduction potential and policies and measures for the European Union. J Ind Ecol 7(3–4):47–62Google Scholar
  22. Patel MK, Theiss A, Worrell E (1999) Surfactant production and use in Germany: resource requirements and CO2 emissions. Resour Conserv Recy 25:61–78CrossRefGoogle Scholar
  23. Perlack R (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. USDA/DOE, Oak Ridge, TNGoogle Scholar
  24. Peypoux F, Bonmatin J, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotech 51:553–563CrossRefGoogle Scholar
  25. Roncero M (1983) Genes controlling xylan utilization by Bacillus subtilis. J Bacteriol 156:257–263Google Scholar
  26. Rosen M (1989) Surfactants and interfacial phenomena. Wiley, New JerseyGoogle Scholar
  27. Rust D (2008) Surfactants: a market opportunity study update. OmniTech International Ltd., Midland, MIGoogle Scholar
  28. Sakamoto K (2001) Current market developments and trends in amino acid-and protein-based surfactants. In: Nnanna I, Xia J (eds) Protein-based surfactants: synthesis, physiochemical properties and applications (Surfactant Science Series), vol 101. Marcel Dekker, New York, NY, pp 261–281Google Scholar
  29. Stachelhaus T, Marahiel M (1995) Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett 125:3–14CrossRefGoogle Scholar
  30. Stevens B, Joska T, Anderson A (2006) Progress toward re-engineering non-ribosomal peptide synthetase proteins; a potential new source of pharmacological agents. Drug Devel Res 66:9–18CrossRefGoogle Scholar
  31. Trieu-Cuot P, Courvalin P (1983) Nucleotide sequence of the streptococcus fraecalis plasmid gene encoding the 3′5′-aminoglycoside phosphotrasferase type III. Gene 23:331–341CrossRefGoogle Scholar
  32. Van Bogaert I, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme E (2007) Microbial production and application of sophorolipids. Appl Microbiol Biotech 76:23–34CrossRefGoogle Scholar
  33. Vater J (1986) Lipopeptides, an attractive class of microbial surfactants. Progr Colloid & Polymer Sci 72:12–18CrossRefGoogle Scholar
  34. Wei Y, Chu I (2002) Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol Lett 24:479–482CrossRefGoogle Scholar
  35. Wolf M, Geczi A, Simon O, Rainer B (1995) Genes encoding xylan and -glucan hydrolyzing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiology 141:281–290CrossRefGoogle Scholar
  36. Zhang Y (2008) Reviving the carbohydrate economy via multi-product lignocelluloses biorefineries. J Ind Microbiol Biotech 35:367–375CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gabriel O. Reznik
    • 1
  • Prashanth Vishwanath
    • 1
  • Michelle A. Pynn
    • 1
  • Joy M. Sitnik
    • 1
  • Jeffrey J. Todd
    • 1
  • Jun Wu
    • 2
  • Yan Jiang
    • 1
  • Brendan G. Keenan
    • 1
  • Andrew B. Castle
    • 1
  • Richard F. Haskell
    • 1
  • Temple F. Smith
    • 1
  • Ponisseril Somasundaran
    • 2
  • Kevin A. Jarrell
    • 1
  1. 1.Modular Genetics, Inc.CambridgeUSA
  2. 2.I/UC Research Center for Novel SurfactantsColumbia UniversityNew YorkUSA

Personalised recommendations