Applied Microbiology and Biotechnology

, Volume 86, Issue 5, pp 1525–1534 | Cite as

A preliminary investigation on the growth requirement for monovalent cations, divalent cations and medium ionic strength of marine actinomycete Salinispora

  • Ginger Tsueng
  • Kin Sing LamEmail author
Applied Microbial and Cell Physiology


In this paper, we report that three species of Salinispora, S. arenicola, S. tropica, and S. pacifica, require magnesium and calcium, for growth, with S. pacifica having the most stringent growth requirement for these ions. Interaction between these ions in supporting the growth of Salinispora was observed. We also demonstrated that the absolute requirement of sodium to support the growth of Salinispora has not been established as all three species of Salinispora can use either potassium or lithium to replace sodium to support maximum growth. While lithium can replace sodium to support maximum growth of Salinispora, it is more toxic to S. arenicola than S. tropica and S. pacifica, inhibiting the growth of S. arenicola at 189 mM but without effect on the growth of S. tropica and S. pacifica. Using both sodium chloride-based and lithium chloride-based media, we showed that Salinispora has a growth requirement for divalent ions, magnesium and calcium as well as growth requirement for ionic strength (8.29 to 15.2 mS/cm). S. arenicola has a lower growth requirement for ionic strength than S. tropica and S. pacifica.


Salinispora arenicola Salinispora tropica Salinispora pacifica Monovalent cations Divalent cations Medium ionic strength 


  1. Avetisyan AV, Dibrov PA, Semeykina AL, Skulachev VP, Sokolov MV (1991) Adaptation of Bacillus FTU and Escherichia coli to alkaline conditions: the Na+-motive respiration. Biochim Biophys Acta 1098:95–104CrossRefGoogle Scholar
  2. Bryant MP, Robinson IM, Chu H (1959) Observations on the nutrition of Bacteroides succinogenes – a ruminal cellulolytic bacterium. J Dairy Sci 42:1831–1847Google Scholar
  3. Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499CrossRefGoogle Scholar
  4. Caldwell DR, Hudson RF (1974) Sodium, an obligate growth requirement for predominant rumen bacteria. Appl Microbiol 27:549–552Google Scholar
  5. Caldwell DR, Keeney M, Barton JS, Kelley JF (1973) Sodium and other inorganic growth requirement of Bacteroides amylophilus. J Bacteriol 114:782–789Google Scholar
  6. Chauhan D, Hideshima T, Anderson KC (2006) A novel proteasome inhibitor NPI-0052 as an anticancer therapy. Brit J Cancer 95:961–965CrossRefGoogle Scholar
  7. Chun J, Bae KS, Moon EY, Jung S-O, Lee HK, Kim S-J (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913Google Scholar
  8. Dimroth P (1987) Sodium ion transport decarbolyases and other aspects of sodium ion cycling in bacteria. Microbiol Rev 51:320–340Google Scholar
  9. Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673CrossRefGoogle Scholar
  10. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tonb JF, Dongherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzea RD. Science 269:496–512CrossRefGoogle Scholar
  11. Fujiwara-Nagata E, Eguchi M (2004) Significance of Na+ in the fish pathogen, Vibrio anguillarum, under energy depleted condition. FEMS Microbiol Lett 234:163–167CrossRefGoogle Scholar
  12. Goldman M, Deibel RH, Niven CF Jr (1963) Interrelationship between temperature and sodium chloride on growth of lactic acid bacteria isolated from meat-curing brines. J Bacteriol 85:1017–1021Google Scholar
  13. Häse CC, Fedorova ND, Galperin MY, Dibrov PA (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370CrossRefGoogle Scholar
  14. Hayashi M, Nakayama Y, Unemoto T (1996) Existence of Na+-translocating NADH-quinone reductase in Haemophilus influenzae. FEBS Lett 381:174–176CrossRefGoogle Scholar
  15. Hunter SH (1972) Inorganic nutrition. Annu Rev Microbiol 26:313–346CrossRefGoogle Scholar
  16. Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176:243–254CrossRefGoogle Scholar
  17. Jensen PR, Lauro FM (2008) An assessment of actinobacterial diversity in the marine environment. Antonie Van Leeuwenhoek 94:51–62CrossRefGoogle Scholar
  18. Johnson FH, Harvey EN (1938) Bacterial luminescence, respiration and viability in relation to osmotic pressure and specific salts of sea water. J Cell Comp Physiol 11:213–232CrossRefGoogle Scholar
  19. Kogure K (1998) Bioenergetics of marine bacteria. Curr Opin Biotechnol 9:278–282CrossRefGoogle Scholar
  20. Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251CrossRefGoogle Scholar
  21. Larsen H (1962) Halophilism. In: Gunsalus IC, Stanier RY (eds) The bacteria: a treatise on structure and function, vol 4. Academic Press, Inc, New York, pp 297–342Google Scholar
  22. McCarter LL (2001) Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev 65:445–462CrossRefGoogle Scholar
  23. MacLeod RA (1965) The questions of the existence of specific marine bacteria. Bacteriol Rev 29:9–23Google Scholar
  24. MacLeod RA (1968) On the role of inorganic ions in the physiology of marine bacteria. In: Droop MR, Ferguson Wood EJ (eds) Advances in microbiology of the sea, vol 1. Academic Press, London, pp 95–126Google Scholar
  25. MacLeod RA (1971) Salinity: bacteria, fungi, and blue-green algae. In: Kinne O (ed) Marine ecology, vol 1. Environmental factors, Part 2. Wiley Interscience, London, pp 689–703Google Scholar
  26. MacLeod RA, Matula TI (1961) Solute requirements for preventing lysis of some marine bacteria. Nature 192:1209–1210CrossRefGoogle Scholar
  27. MacLeod RA, Matula TI (1962) Nutrition and metabolism of marine bacteria. XI. Some characteristics of the lytic phenomenon. Can J Microbiol 8:883–896CrossRefGoogle Scholar
  28. MacLeod RA, Onofrey E (1956) Nutrition and metabolism of marine bacteria. VI. Quantitative requirements for halides, magnesium, calcium and iron. Can J Microbiol 3:753–759CrossRefGoogle Scholar
  29. Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766CrossRefGoogle Scholar
  30. Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 61:3695–3700Google Scholar
  31. Nakamura T, Kawasaki S, Unemoto T (1992) Roles of K+ and Na+ in pH homeostatis and growth of marine bacterium Vibrio alginolyticus. J Gen Microbiol 138:1271–1276Google Scholar
  32. Oh S, Kogure K, Ohwada K, Simidu U (1991) Correlation between possession of a respiration-dependent Na+ pump and Na+ requirement for growth of marine bacteria. Appl Environ Microbiol 57:1844–1846Google Scholar
  33. Oh D-C, Williams PG, Kauffman CA, Jensen PR, Fenical W (2006) Cyanosporasides A and B, chloro- and cyano-cyclopenta[α] indene glycosides from the marine actinomycete “Salinispora pacifica”. Org Lett 8:1021–1024CrossRefGoogle Scholar
  34. Oh DC, Gontang EA, Kauffman CA, Jensen PR, Fenical W (2008) Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J Nat Prod 71:570–575CrossRefGoogle Scholar
  35. Pratt D (1974) Salt requirements for growth and function of marine bacteria. In: Colwell RR, Morita RY (eds) Effect of the ocean environment on microbial activities. University Park Press, Baltimore, pp 3–15Google Scholar
  36. Rürgen H-J, Hentzschel G (1980) Mineral salt requirements of Bacillus globisporus subsp. marinus strains. Arch Microbiol 126:83–86CrossRefGoogle Scholar
  37. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstruction phylogenic trees. Mol Biol Evol 4:406–425Google Scholar
  38. Sakazaki RS, Iwanami S, Fukumi H (1963) Studies on the enteropathogenic, facultatively halophilic bacteria, Vibrio parahaemolyticous. I. Morphological, cultural and biochemical properties and its taxonomical position. Jap J Med Sci Biol 16:161–188Google Scholar
  39. Sieburth JM (1979) Sea microbes. Oxford University Press, New YorkGoogle Scholar
  40. Sistrom WR (1960) A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol 22:778–785Google Scholar
  41. Tsueng G, Lam KS (2008a) A low-sodium-salt formulation for the fermentation of salinosporamides by Salinispora tropica strain NPS21184. Appl Microbiol Biotechnol 78:821–826CrossRefGoogle Scholar
  42. Tsueng G, Lam KS (2008b) Growth of Salinispora tropica strains CNB440, CNB476, and NPS21184 in nonsaline, low-sodium media. Appl Microbiol Biotechnol 80:873–880CrossRefGoogle Scholar
  43. Tsueng G, Teisan S, Lam KS (2008) Defined salt formulations for the growth of Salinispora tropica strain NPS21184 and the production of salinosporamide A (NPI-0052) and related analogs. Appl Microbiol Biotechnol 78:827–832CrossRefGoogle Scholar
  44. Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequence reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381CrossRefGoogle Scholar
  45. Unemoto T, Tsuruoka T, Hayashi M (1973) Role of Na+ and K+ in preventing lysis of a slightly halophilic Vibrio alginolyticus. Can J Microbiol 19:563–571CrossRefGoogle Scholar
  46. Unemoto T, Hayashi M, Terao K (1977) Lysis of halophilic Vibrio alginolyticus and Vibrio costicolus induced by chaotropic anions. Biochim Biophys Acta 500:425–431Google Scholar
  47. Unemoto T, Akagawa A, Mizugaki M, Hayashi M (1992) Distribution of Na+-dependent respiration and a respiration-driven electrogenic Na+ pump in moderately halophilic bacteria. J Gen Microbiol 138:1999–2005Google Scholar
  48. Wackett LP, Dodge AG, Ellis LBM (2004) Microbial genomics and the periodic table. Appl Environ Microbiol 70:647–655CrossRefGoogle Scholar
  49. Ward AC, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:1–8CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Nereus Pharmaceuticals, IncSan DiegoUSA
  2. 2.Marrone Bio InnovationsDavisUSA

Personalised recommendations