Applied Microbiology and Biotechnology

, Volume 85, Issue 6, pp 1697–1712 | Cite as

Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms

  • Thaddeus Ezeji
  • Caroline Milne
  • Nathan D. Price
  • Hans P. BlaschekEmail author


Anaerobic bacteria such as the solventogenic clostridia can ferment a wide range of carbon sources (e.g., glucose, galactose, cellobiose, mannose, xylose, and arabinose) to produce carboxylic acids (acetic and butyric) and solvents such as acetone, butanol, and ethanol (ABE). The fermentation process typically proceeds in two phases (acidogenic and solventogenic) in a batch mode. Poor solvent resistance by the solventogenic clostridia and other fermenting microorganisms is a major limiting factor in the profitability of ABE production by fermentation. The toxic effect of solvents, especially butanol, limits the concentration of these solvents in the fermentation broth, limiting solvent yields and adding to the cost of solvent recovery from dilute solutions. The accepted dogma is that toxicity in the ABE fermentation is due to chaotropic effects of butanol on the cell membranes of the fermenting microorganisms, which poses a challenge for the biotechnological whole-cell bio-production of butanol. This mini-review is focused on (1) the effects of solvents on inhibition of cell metabolism (nutrient transport, ion transport, and energy metabolism); (2) cell membrane fluidity, death, and solvent tolerance associated with the ability of cells to tolerate high concentrations of solvents without significant loss of cell function; and (3) strategies for overcoming poor solvent resistance in acetone and butanol-producing microorganisms.


Clostridium Solvents Tolerance Butanol toxicity Acetone 



This work was supported by funding from Northeast Sungrant (Cornell University) Award/Contract number GRT00012344, National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2006-35504-17419, NSF CAREER award (NDP) to Nathan Price, and Seed grant from Ohio Agricultural Research and Development Center (OARDC), Wooster.


  1. Aguilera F, Peinado RA, Millan C, Ortega JM, Mauricio JC (2006) Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int J Food Microbiol 110:34–42Google Scholar
  2. Alsaker KV, Spitzer TR, Papoutsakis ET (2004) Transcriptional analysis of spo0A over expression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress. J Bacteriol 186:1959–1971Google Scholar
  3. Annous BA, Blaschek HP (1991) Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol 57:2544–2548Google Scholar
  4. Ashe MP, Slaven JW, De Long SK, Ibrahimo S, Sachs AB (2001) A novel eIF2B-dependent mechanism of translational control in yeast as a response to fuel alcohols. EMBO J 20:6464–6474Google Scholar
  5. Atsumi S, Liao JC (2008a) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808Google Scholar
  6. Atsumi S, Liao JC (2008b) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419Google Scholar
  7. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311Google Scholar
  8. Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89Google Scholar
  9. Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861Google Scholar
  10. Barber JM, Robb FT, Webster JR, Woods DR (1979) Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process. Appl Environ Microbiol 37:433–437Google Scholar
  11. Bermejo LL, Welker NE, Papoutsakis ET (1998) Expression of Clostridium acetobutylicum ATCC 824 genes in Escherichia coli for acetone production and acetate detoxification. Appl Environ Microbiol 64:1079–1085Google Scholar
  12. Booth I, Morris JG (1975) Proton motive force in the obligately anaerobic bacterium Clostridium pasteurianum- a role in galactose and gluconate uptake. FEBS Letters 59:153–157Google Scholar
  13. Borden JR, Papoutsakis ET (2007) Dynamics of genomic-library enrichment and identification of solvent tolerance genes for Clostridium acetobutylicum. Appl Environ Microbiol 73:3061–3068Google Scholar
  14. Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50:1165–1170Google Scholar
  15. Brynildsen MP, Liao JC (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Mol Syst Biol 5:277Google Scholar
  16. Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81:89–98Google Scholar
  17. Chen CK, Blaschek HP (1999) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173Google Scholar
  18. Connor MR, Liao JC (2008) Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Environ Microbiol 74:5769–5775Google Scholar
  19. Demuez M, Cournac L, Guerrini O, Soucaille P, Girbal L (2007) Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners. FEMS Microbiol Lett 275:113–121Google Scholar
  20. Durre P (2008) Fermentative butanol production: bulk chemical and biofuel. Ann NY Acad Sci 1125:353–362Google Scholar
  21. Ennis BM, Qureshi N, Maddox IS (1987) Inline toxic product removal during solvent production by continuous fermentation using immobilized Clostridium acetobutylicum. Enzyme Microb Technol 9:672–675Google Scholar
  22. Evans PJ, Wang HW (1988) Enhancement of butanol fermentation by Clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Appl Environ Microbiol 54:1662–1667Google Scholar
  23. Ezeji TC, Blaschek HP (2007) Biofuel from butanol: advances in genetic and physiological manipulation of clostridia. BioWorld Europe 2:12–15Google Scholar
  24. Ezeji TC, Li Y (2009) Advanced product recovery technologies. In: Vertes A, Qureshi N, Yukawa H, Blaschek H (eds) Biomass to biofuel. Wiley, Hoboken, in pressGoogle Scholar
  25. Ezeji TC, Qureshi N, Blaschek (2003) Production of butanol by Clostridium beijerinckii BA101 and in-situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603Google Scholar
  26. Ezeji TC, Qureshi N, Blaschek HP (2004a) Acetone-butanol-ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658Google Scholar
  27. Ezeji TC, Qureshi N, Blaschek HP (2004b) Butanol fermentation research: upstream and downstream manipulations. Chem Rec 4:305–314Google Scholar
  28. Ezeji TC, Qureshi N, Karcher PM, Blaschek HP (2005a) Improving the performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess Biosystems Eng 27:207–214Google Scholar
  29. Ezeji TC, Qureshi N, Blaschek HP (2005b) Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J Biotechnol 115:179–187Google Scholar
  30. Ezeji TC, Qureshi N, Karcher P, Blaschek HP (2006) Butanol production from corn. In: Minteer SD (ed) Chapter in “Alcoholic Fuels: Fuels for Today and Tomorrow”. Taylor & Francis (Taylor & Francis Group), New York, pp 99–122Google Scholar
  31. Ezeji TC, Qureshi N, Blaschek HP (2007a) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469Google Scholar
  32. Ezeji TC, Qureshi N, Blaschek HP (2007b) Production of acetone butanol ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem 42:34–39Google Scholar
  33. Ezeji TC, Qureshi N, Blaschek HP (2007c) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227Google Scholar
  34. Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304Google Scholar
  35. Garcia A, Iannotti EL, Fischer JL (1986) Butanol fermentation liquor production and separation by reverse osmosis. Biotechnol Bioeng 28:785–791Google Scholar
  36. Green EM, Boynton ZL, Harris LM, Ruldolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086Google Scholar
  37. Groot WJ, van den Oever CE, Kossen NWF (1984) Pervaporation for simultaneous product recovery in the butanol/isopropanol batch fermentation. Biotechnol Lett 6:709–714Google Scholar
  38. Guerrini O, Burlat B, Léger C, Guigliarelli B, Soucaille P, Girbal L (2008) Characterization of Two 2[4Fe4S] Ferredoxins from Clostridium acetobutylicum. Curr Microbiol 56:261–267Google Scholar
  39. Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73:7814–7818Google Scholar
  40. Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition. Biotechnol Bioeng 67:1–11Google Scholar
  41. Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27:322–328Google Scholar
  42. Hermann M, Fayolle F, Marchal R, Podvin L, Sebald M, Vandecasteele JP (1985) Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50:1238–1243Google Scholar
  43. Herrero AA (1983) End-product inhibition in anaerobic fermentation. Trends Biotechnol 1:49–53Google Scholar
  44. Herrero AA, Gomez RF, Roberts MF (1985) 3lP NMR studies of Clostridium thermocellum. Mechanism of end product inhibition by ethanol. J Biol Chem 260:7442–7451Google Scholar
  45. Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW (2007) Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cervisiae. Genetics 175:1479–1487Google Scholar
  46. Huang H.-J, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Separations Purifications Technol 62:1–21Google Scholar
  47. Hutkins RW, Kashket ER (1986) Phosphotransferase activity in Clostridium acetobutylicum from acedogenic and solvetogenic phases of growth. Appl Environ Microbiol 51:1121–1123Google Scholar
  48. Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678Google Scholar
  49. Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9:305–319Google Scholar
  50. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524Google Scholar
  51. Karcher P, Ezeji TC, Qureshi N, Blaschek HP (2005) Microbial production of butanol: product recovery by extraction. In: Satyanarayana T, Johri BN (eds) Chapter in Microbial Diversity: current perspectives and potential applications. IK International Publishing House Pvt Ltd, New Delhi, pp 865–880Google Scholar
  52. Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153(1–3):13–20Google Scholar
  53. Lee J, Mitchell WJ, Blashek HP (2001) Glucose uptake in Clostridium beijerinkii NIMB 8052 and the solvent-hyperproducing mutant BA101. Appl Environ Microbiol 67:5025–5031Google Scholar
  54. Lee J, Mitchell WJ, Tangney M, Blaschek HP (2005) Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl Environ Microbiol 71:3384–3387Google Scholar
  55. Lepage C, Fayolle F, Hermann M, Vandecasteele JP (1987) Changes in membrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol 133:103–110Google Scholar
  56. Lin YL, Blaschek HP (1983) Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl Environ Microbiol 45:966–973Google Scholar
  57. Lin YL, Blaschek HP (1993) butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl Environ Microbiol 45:966–973Google Scholar
  58. Linden JC, Moreira A (1982) Anaerobic production of chemicals. In: Hollaender A (ed) Chapter in “Basic biology of new developments in biotechnology (Basic Life Sciences 25)”. Plenum Press, New York, pp 377–403Google Scholar
  59. Liyanage H, Young M, Kashket ER (2000) Butanol tolerance of Clostridium beijerinckii NCIMB 8052 associated with down-regulation of gldA by antisense RNA. J Mol Microbiol Biotechnol 2:87–93Google Scholar
  60. Lovitt RW, Longin R, Zeikus JG (1984) Ethanol production by thermophilic bacteria: physiological comparison of solvent effects on parent and alcohol-tolerant strains of Clostridium thermohydrosulfuricum. Appl Environ Microbiol 48:171–177Google Scholar
  61. Maddox IS (1989) The acetone–butanol–ethanol fermentation: recent progress in technology. Biotechnol Genetic Eng Rev 7:190–220Google Scholar
  62. Mermelstein LD, Welker NE, Petersen DJ, Bennett GN, Papoutsakis ET (1994) Genetic and metabolic engineering of Clostridium acetobutylicum ATCC 824. Ann NY Acad Sci 721:54–68Google Scholar
  63. Meyer CL, Roos JW, Papoutsakis ET (1986) Carbon monoxide gassing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 24:159–167Google Scholar
  64. Michel GP, Starka J (1986) Effect of ethanol and heat stresses on the protein pattern of Zymolnonas mobilis. J Bacteriol 165:1040–1042Google Scholar
  65. Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 39:31–130Google Scholar
  66. Mitchell WJ, Booth IR (1984) Characterization of the Clostridium pasteurianum phophotransferase system. J Gen Microbiol 130:2193–2200Google Scholar
  67. Mitchell WJ, Tangney M (2005) Carbohydrate uptake by the phosphotransferase system and other mechanisms. In: Durre P (ed) Handbook on Clostridia Chapter 8. Taylor and Francis, New York, pp 155–175Google Scholar
  68. Mitchell WJ, Shaw JE, Andrews L (1991) Properties of glucose phophotransferase system of Clostridium acetobutylicum NCIMB 8052. Appl Environ Microbiol 57:2354–2539Google Scholar
  69. Monot F, Engasser JM, Petitdemage H (1984) Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 19:422–426Google Scholar
  70. Moreira AR, Ulmer D, Linden JC (1981) Butanol toxicity in the butylic fermentation. Biotechnol Bioeng Symp 11:567–579Google Scholar
  71. Nielsen DR, Yoon LE, S-H TH-C, Yuan C, Prather KLJ (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273Google Scholar
  72. Nielson L, Larsson M, Holst O, Mattiasson B (1988) Adsorbents for extractive bioconversion applied to the acetone butanol fermentation. Appl Microbiol Biotechnol 28:335–339Google Scholar
  73. Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838Google Scholar
  74. Okamoto H, Sone N, Hirata H, Yoshida M, Kagawa Y (1977) Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium. J Biol Chem 252:6125–6131Google Scholar
  75. Osman YA, Ingram LO (1985) Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol 164:173–180Google Scholar
  76. Ounine K, Petitdamage H, Raval G, Gay R (1985) Regulation and butanol inhibition of D-Xylose and D-Glucose uptake in Clostridium acetobutylicum. Appl Environ Microbiol 49:874–878Google Scholar
  77. Peguin S, Soucaille P (1995) Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl Environ Microbiol 61:403–405Google Scholar
  78. Petitdemange H, Cherrier C, Raval G, Gay R (1976) Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group. Biochim Biophys Acta 421:334–347Google Scholar
  79. Phillips JA, Humphrey AE (1983) An overview of process technology for the production of liquid fuels and chemical feedstocks via fermentation. In: Wise DL (ed) Organic chemicals from biomass. Benjamins/Cummings Publishing, Menlo Park, Calif, pp 249–304Google Scholar
  80. Quinkal I, Davasse V, Gaillard J, Moulis JM (1994) On the role of conserved proline residues in the structure and function of Clostridium pasteurianum 2[4Fe-4S] ferredoxin. Protein Eng 7:681–687Google Scholar
  81. Qureshi N, Blaschek HP (1999) Butanol recovery from model solution/fermentation broth by pervaporation: Evaluation of membrane performance. Biomass Bioenergy 17:175–184Google Scholar
  82. Qureshi N, Blaschek HP (2000) Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA101. Trans IChemE 78(Part C):139–144Google Scholar
  83. Qureshi N, Blaschek HP (2001) Recent advances in ABE fermentation: hyper-butanol producing Clostridium beijerinckii BA101. J Ind Microbiol Biotechnol 27:287–291Google Scholar
  84. Qureshi N, Ezeji TC (2008) Butanol (a superior biofuel) production from agricultural residues (renewable biomass): Recent progress in technology. Biofuels Bioprod Bioref 2:319–330Google Scholar
  85. Qureshi N, Maddox IS, Friedl A (1992) Application of continuous substrate feeding to the ABE fermentation: relief of product inhibition using extraction, perstraction, stripping and pervaporation. Biotechnol Prog 8:382–390Google Scholar
  86. Qureshi N, Meagher MM, Hutkins RW (1999) Recovery of butanol from model solutions and fermentation broth using a silicalite/silicone membrane. J Memb Sci 158:115–125Google Scholar
  87. Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-González MI, Rojas A, Terán W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768Google Scholar
  88. Rao G, Mutharasan R (1987) Altered electron flow in continuous cultures of Clostridium acetobutylicum Induced by Viologen Dyes. Appl Environ Microbiol 53:1232–1235Google Scholar
  89. Riebeling V, Jungermann K (1976) Properties and function of Clostridial membrane ATPase. Biochim Biophys Acta 430:434–444Google Scholar
  90. Riebeling V, Thauer RK, Jungermann K (1975) The internal alkaline pH gradient, sensitive to uncoupler and ATP ase inhibitor, in growing Clostridium pasteurianum. Eur J Biochem 55:445–453Google Scholar
  91. Roffler SR, Blanch HW, Wilke CR (1987) In-situ recovery of butanol during fermentation: Part 2. Fed-batch extractive fermentation. Bioproc Eng 2:181–190Google Scholar
  92. Ruhl J, Schmid A, Blank ML (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656Google Scholar
  93. Russell JB, Diez-Gonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microbial Physiol 39:205–234Google Scholar
  94. Saier MH, Stiles CD (1975) Molecular dynamics in biological membranes. Springer-Verlag, New YorkGoogle Scholar
  95. Schwarz WH, Slattery M, Gapes RJ (2007) The ABC of ABE. BioWorld Europe 2:8–10Google Scholar
  96. Shao P, Huang RYM (2007) Polymeric membrane pervaporation. J Membr Sci 287:162–179Google Scholar
  97. Shi S, Blaschek HP (2008) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the shift from acidogenesis to solventogenesis. Appl Environ Microbiol 2008(74):7709–7714Google Scholar
  98. Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36Google Scholar
  99. Tashiro Y, Shinto H, Hayashi M, Baba S, Kobayashi G, Sonomoto K (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutyl acetonicum N1–4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104:238–240Google Scholar
  100. Taylor M, Tuffin M, Burton S, Eley K, Cowan D (2008) Microbial responses to solvent and alcohol stress. Biotechnol J 3:1388–1397Google Scholar
  101. Terracciano JS, Kashket ER (1986) Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum. Appl Environ Microbiol 52:96–91Google Scholar
  102. Terracciano JS, Rapaport E, Kashket ER (1988) Stress- and growth phase-associated proteins of Clostridium acetobutylicum. Appl Environ Microbiol 54:1989–1995Google Scholar
  103. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol 69:4951–4965Google Scholar
  104. Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186:2006–2018Google Scholar
  105. Traxler RW, Wood EM, Mayer J, Wilson MP (1985) Extractive fermentation for the production of butanol. Dev Ind Microbiol 36:519–525Google Scholar
  106. Van Der Westhuizen A, Jones DT, Woods DR (1982) Autolytic activity and butanol tolerance of Clostridium acetobutylicum. Appl Environ Microbiol 44:1277–1281Google Scholar
  107. Vane A (2005) Review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80:603–629Google Scholar
  108. Vollherbst-Schneck K, Sands JA, Montenecourtv (1984) Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 47:193–194Google Scholar
  109. Yan RT, Zhu CX, Golemboski C, Chen JS (1988) Expression of solvent-forming enzymes and onset of solvent production in batch cultures of Clostridium beijerinckii (“Clostridium butylicum”). Appl Environ Microbiol 54:642–648Google Scholar
  110. Zhao Y, Hindorff LA, Chuang A, Monroe AM, Lyristis M, Harrison ML, Rudolph FB, Bennett GN (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 69:2831–2841Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Thaddeus Ezeji
    • 2
  • Caroline Milne
    • 3
  • Nathan D. Price
    • 3
  • Hans P. Blaschek
    • 1
    Email author
  1. 1.Center for Advanced BioEnergy ResearchUniversity of Illinois Urbana-ChampaignUrbanaUSA
  2. 2.Department of Animal Sciences and Ohio State Agricultural Research and Development Center (OARDC)The Ohio State UniversityWoosterUSA
  3. 3.Department of Chemical and Biomolecular EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations