Advertisement

Applied Microbiology and Biotechnology

, Volume 86, Issue 5, pp 1439–1449 | Cite as

Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme

  • Jee-Soo Son
  • Se-Jung Lee
  • Soo Youn Jun
  • Seong Jun Yoon
  • Sang Hyeon Kang
  • Hyoung Rok Paik
  • Jung Ok Kang
  • Yun-Jaie Choi
Biotechnologically Relevant Enzymes and Proteins

Abstract

Antibacterial and biofilm removal activity of a new podoviridae Staphylococcus aureus bacteriophage (SAP-2), which belongs to the φ29-like phage genus of the Podoviridae family, and a cell-wall-degrading enzyme (SAL-2), which is derived from bacteriophage SAP-2, have been characterized. The cell-wall-degrading enzyme SAL-2 was expressed in Escherichia coli in a soluble form using a low-temperature culture. The cell-wall-degrading enzyme SAL-2 had specific lytic activity against S. aureus, including methicillin-resistant strains, and showed a minimum inhibitory concentration of about 1 μg/ml. In addition, this enzyme showed a broader spectrum of activity within the Staphylococcus genus compared with bacteriophage SAP-2 in its ability to remove the S. aureus biofilms. Thus, the cell-wall-degrading enzyme SAL-2 can be used to prevent and treat biofilm-associated S. aureus infections either on its own or in combination with other cell-wall-degrading enzymes with anti-S. aureus activity.

Keywords

Cell-wall-degrading enzyme Podoviridae Bacteriophage Biofilm Staphylococcus aureus 

Notes

Acknowledgments

This work was partially supported by a graduate fellowship from the Brain Korea 21 project of the Korean Ministry of Education, Science, and Technology and the Research Institute for Agriculture and Life Sciences, Seoul National University. Electron microscopy was carried out by the National Instrumental Center for Environmental Management (NICEM), Seoul National University.

References

  1. Ackermann HW (1998) Tailed bacteriophage: the order Caudovirales. Adv Virus Res 51:135–201CrossRefGoogle Scholar
  2. Ando E, Monden K, Mitsuhata R, Kariyama R, Kumon H (2004) Biofilm formation among methicillin-resistant Staphylococcus aureus isolates from patients with urinary tract infection. Acta Med Okayama 58:207–214Google Scholar
  3. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16Google Scholar
  4. Arciola CR, Montanaro L, Baldassarri L, Borsetti E, Cavedagna D, Donati E (1999) Slime production by Staphylococci isolated from prosthesis-associated infections. New Microbiol 22:337–341Google Scholar
  5. Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266CrossRefGoogle Scholar
  6. Baird-Parker AC (1962) An improved diagnostic and selective medium for isolating coagulase-positive staphylococci. J Appl Bacteriol 25:12–19Google Scholar
  7. Barry AL, García F, Thrupp LD (1970) An improved single-disk method for testing the antibiotic susceptibility of rapidly-growing pathogens. Am J Clin Pathol 53:149–158Google Scholar
  8. Celia LK, Nelson D, Kerr DE (2008) Characterization of a bacteriophage lysin (Ply700) from Streptococcus uberis. Vet Microbiol 130:107–117CrossRefGoogle Scholar
  9. Chokr A, Leterme D, Watier D, Jabbouri S (2007) Neither the presence of ica locus, nor in vitro-biofilm formation ability is a crucial parameter for some Staphylococcus epidermidis strains to maintain an infection in a guinea pig tissue cage model. Microb Pathog 42:94–97CrossRefGoogle Scholar
  10. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefGoogle Scholar
  11. Cramton SE, Gerke C, Schnell NF, Nichols WW, Götz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433Google Scholar
  12. Davison S, Couture-Tosi E, Candela T, Mock M, Fouet A (2005) Identification of the Bacillus anthracis γ phage receptor. J Bacteriol 187:6742–6749CrossRefGoogle Scholar
  13. Donlan RM (2009) Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol 17:66–72CrossRefGoogle Scholar
  14. Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378CrossRefGoogle Scholar
  15. Hanlon GW (2007) Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents 30:118–128CrossRefGoogle Scholar
  16. Hermoso JA, García JL, García P (2007) Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 10:461–472CrossRefGoogle Scholar
  17. Johnson AP, Aucken HM, Cavendish S, Ganner M, Wale MC, Warner M, Livermore DM, Cookson BD, the UK EARSS participants (2001) Dominance of EMRSA-15 and -16 among MRSA causing nosocomial bacteraemia in the UK: analysis of isolates from the European Antimicrobial Resistance Surveillance System (EARSS). J Antimicrob Chemother 48:143–144CrossRefGoogle Scholar
  18. Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2:63–76Google Scholar
  19. Loeffler JM, Nelson D, Fischetti VA (2001) Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172CrossRefGoogle Scholar
  20. Loessner MJ (2005) Bacteriophage endolysins-current state of research and applications. Curr Opin Microbiol 8:480–487CrossRefGoogle Scholar
  21. Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5:378–388CrossRefGoogle Scholar
  22. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310CrossRefGoogle Scholar
  23. Melchior MB, Vaarkamp H, Fink-Gremmels J (2006) Biofilms: a role in recurrent mastitis infections? Vet J 171:398–407CrossRefGoogle Scholar
  24. Nelson D, Schuch R, Zhu S, Tscherne DM, Fischetti VA (2003) Genomic sequence of C1, the first streptococcal phage. J Bacteriol 185:3325–3332CrossRefGoogle Scholar
  25. Novick RP (1963) Analysis by transduction of mutations affecting penicillinase formation in Staphylococcus aureus. J Gen Microbiol 33:121–136Google Scholar
  26. Novick RP (1967) Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33:155–166CrossRefGoogle Scholar
  27. O’Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP (2005) The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 187:7161–7164CrossRefGoogle Scholar
  28. O’Gara JP, Humphreys H (2001) Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol 50:581–587Google Scholar
  29. Sass P, Bierbaum G (2007) Lytic activity of recombinant bacteriophage φ11 and φ12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73:347–352CrossRefGoogle Scholar
  30. Seidl K, Goerke C, Wolz C, Mack D, Berger-Bächi B, Bischoff M (2008) Staphylococcus aureus CcpA affects biofilm formation. Infect Immun 76:2044–2050CrossRefGoogle Scholar
  31. Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113CrossRefGoogle Scholar
  32. Takác M, Witte A, Bläsi U (2005) Functional analysis of the lysis genes of Staphylococcus aureus phage P68 in Escherichia coli. Microbiology 151:2331–2342CrossRefGoogle Scholar
  33. Tanji Y, Shimada T, Fukudomi H, Miyanaga K, Nakai Y, Unno H (2005) Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J Biosci Bioeng 100:280–287CrossRefGoogle Scholar
  34. Vybiral D, Takáč M, Loessner M, Witte A, von Ahsen U, Bläsi U (2003) Complete nucleotide sequence and molecular characterization of two lytic Staphylococcus aureus phages: 44AHJD and P68. FEMS Microbiol Lett 219:275–283CrossRefGoogle Scholar
  35. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF (2003) Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 47:3407–3414CrossRefGoogle Scholar
  36. Yoong P, Schuch R, Nelson D, Fischetti VA (2004) Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 186:4808–4812CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jee-Soo Son
    • 1
  • Se-Jung Lee
    • 1
  • Soo Youn Jun
    • 2
  • Seong Jun Yoon
    • 2
  • Sang Hyeon Kang
    • 2
  • Hyoung Rok Paik
    • 2
  • Jung Ok Kang
    • 2
  • Yun-Jaie Choi
    • 1
  1. 1.Laboratory of Animal Cell Biotechnology, Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
  2. 2.iNtRON Biotechnology, IncSeongnam-siSouth Korea

Personalised recommendations