Advertisement

Applied Microbiology and Biotechnology

, Volume 87, Issue 1, pp 271–280 | Cite as

Increasing unsaturated fatty acid contents in Escherichia coli by coexpression of three different genes

  • Yujin Cao
  • Jianming Yang
  • Mo XianEmail author
  • Xin Xu
  • Wei Liu
Applied Genetics and Molecular Biotechnology

Abstract

Biodiesel is an interesting alternative energy source and is used as substitute for petroleum-based diesel. Microorganisms have been used for biodiesel production due to their significant environmental and economic benefits. However, few researches have investigated the regulation of fatty acid composition of these microbial diesels. Fatty acid biosynthesis in Escherichia coli has provided a paradigm for other bacteria and plants. By overexpressing two genes (fabA and fabB) associated with unsaturated fatty acid (UFA) synthesis in E. coli, we have engineered an efficient producer of UFAs. Saturated fatty acid (SFA) contents decreased from 50.2% (the control strain) to 34.6% (the recombinant strain overexpressing fabA and fabB simultaneously) and the ratio of cis-vaccenate (18:1Δ11), a major UFA in E. coli, reached 51.1% in this recombinant strain. When an Arabidopsis thaliana thioesterase (AtFatA) was coexpressed with these two genes, 0.19 mmol l−1 fatty acids was produced by this E. coli strain after 18-h culture under shake-flask conditions. Free fatty acids made up about 37.5% of total fatty acid concentration in this final engineered strain carrying fabA, fabB, and AtFatA, and the ratio of UFA/SFA reached 2.3:1. This approach offers a means to improve the fatty acid composition of microdiesel and might pave the way for production of biodiesel equivalents using engineered microorganisms in the near future.

Keywords

AtFatA Biodiesel fabA fabB Unsaturated fatty acid 

Notes

Acknowledgments

This research was sponsored by CAS 100 Talents Program (KGCX2-YW-801). The authors would like to thank Dr. Yun Fa and Cong Zhang for GC analysis and Dr. Wenna Guan and Cong Wang for GC-MS analysis of fatty acid methyl esters.

Supplementary material

253_2009_2377_Fig6_ESM.gif (351 kb)
Fig. S1

Gas chromatograms of fatty acid methyl esters obtained from different E. coli transformants after 3-h induction. A, The control strain harboring pET30a; B, the pET-fabA transformants; C, the pET-fabB transformants; D, the pET-fabAB transformants; E, the pACYC-TE transformants; F, E. coli strain harboring both pET-fabAB and pACYC-TE. 14:0, myristic acid; 16:1 palmitoleic acid; 16:0, palmitic acid; 18:1, cis-vaccenic acid (GIF 350 kb)

253_2009_2377_Fig6_ESM.tif (400 kb)
High resolution image file (TIFF 399 kb)
253_2009_2377_Fig7_ESM.gif (370 kb)
Fig. S2

Gas chromatograms of fatty acid methyl esters obtained from different E. coli transformants after 6 h induction. A, The control strain harboring pET30a; B, the pET-fabA transformants; C, the pET-fabB transformants; D, the pET-fabAB transformants; E, the pACYC-TE transformants; F, E. coli strain harboring both pET-fabAB and pACYC-TE. 14:0, myristic acid; 16:1 palmitoleic acid; 16:0, palmitic acid; 17:0c, cis-methylene-9,10-hexadecanoic acid; 18:1, cis-vaccenic acid; 19:0c, cis-methylene-11,12-octadecanoic acid (GIF 369 kb)

253_2009_2377_Fig7_ESM.tif (237 kb)
High resolution image file (TIFF 237 kb)
253_2009_2377_Fig8_ESM.gif (399 kb)
Fig. S3

Gas chromatograms of fatty acid methyl esters obtained from different E. coli transformants after 12 h induction. A, The control strain harboring pET30a; B, the pET-fabA transformants; C, the pET-fabB transformants; D, the pET-fabAB transformants; E, the pACYC-TE transformants; F, E. coli strain harboring both pET-fabAB and pACYC-TE. 14:0, myristic acid; 16:1 palmitoleic acid; 16:0, palmitic acid; 17:0c, cis-methylene-9,10-hexadecanoic acid; 18:1, cis-vaccenic acid; 19:0c, cis-methylene-11,12-octadecanoic acid (GIF 399 kb)

253_2009_2377_Fig8_ESM.tif (425 kb)
High resolution image file (TIFF 425 kb)
253_2009_2377_Fig9_ESM.gif (134 kb)
Fig. S4

Gas chromatograms of free fatty acids obtained from different E. coli transformants. A, E. coli strain harboring pACYC-TE; B, E. coli strain harboring both pET-fabAB and pACYC-TE. 14:0, myristic acid; 16:1 palmitoleic acid; 16:0, palmitic acid; 18:1, cis-vaccenic acid (GIF 134 kb)

253_2009_2377_Fig9_ESM.tif (161 kb)
High resolution image file (TIFF 161 kb)

References

  1. Abelson PH (1995) Renewable liquid fuels. Science 268:955CrossRefGoogle Scholar
  2. Aguilar PS, DeMendoza D (2006) Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Mol Microbiol 62:1507–1514CrossRefGoogle Scholar
  3. Aguilar PS, Cronan JE, DeMendoza D (1998) A Bacillus subtilis induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180:2194–2200Google Scholar
  4. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376CrossRefGoogle Scholar
  5. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056CrossRefGoogle Scholar
  6. Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35CrossRefGoogle Scholar
  7. Apiradee H, Kalyanee P, Pongsathon P, Patcharaporn D, Matura S, Sanjukta S, Supapon C, Morakot T (2004) The expression of three desaturase genes of Spirulina platensis in Escherichia coli DH5α. Mol Biol Rep 31:177–189CrossRefGoogle Scholar
  8. Atsumi S, Wu T, Eckl E, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657CrossRefGoogle Scholar
  9. Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H (2001) Whole-cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8:39–43CrossRefGoogle Scholar
  10. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917Google Scholar
  11. Bloch K (1969) Enzymatic synthesis of monounsaturated fatty acids. Accounts Chem Res 2:193–202CrossRefGoogle Scholar
  12. Cahoon EB, Mills LA, Shanklin J (1996) Modification of the fatty acid composition of Escherichia coli by coexpression of a plant acyl-acyl carrier protein desaturase and ferredoxin. J Bacteriol 178:936–939Google Scholar
  13. Cao Y, Xian M, Yang J, Xu X, Liu W, Li L (2010) Heterologous expression of stearoyl-acyl carrier protein desaturase (S-ACP-DES) from Arabidopsis thaliana in Escherichia coli. Protein Expr Purif 69:209–214CrossRefGoogle Scholar
  14. Chang YY, Cronan JE (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259CrossRefGoogle Scholar
  15. DeMendoza D, Ulrich AK, Cronan JE (1983) Thermal regulation of membrane fluidity in Escherichia coli. J Biol Chem 258:2098–2101Google Scholar
  16. Demirba A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manag 44:2093–2109CrossRefGoogle Scholar
  17. Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79:331–337CrossRefGoogle Scholar
  18. Feng Y, Cronan JE (2009) Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. J Biol Chem 284:29526–29535CrossRefGoogle Scholar
  19. Gao B, Su E, Lin J, Jiang Z, Ma Y, Wei D (2009) Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production. J Biotechnol 139:169–175CrossRefGoogle Scholar
  20. Grogan DW, Cronan JE (1984) Cloning and manipulation of the Escherichia coli cyclopropane fatty acid synthase gene: physiological aspects of enzyme overproduction. J Bacteriol 158:286–295Google Scholar
  21. Grogan DW, Cronan JE (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441Google Scholar
  22. Heath RJ, White SW, Rock CO (2002) Inhibitors of fatty acid synthesis as antimicrobial chemotherapeutics. Appl Microbiol Biotechnol 58:695–703CrossRefGoogle Scholar
  23. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:11206–11210CrossRefGoogle Scholar
  24. Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534CrossRefGoogle Scholar
  25. Jones A, Davies HM, Voelker TA (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell 7:359–371CrossRefGoogle Scholar
  26. Kalscheuer K, Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536CrossRefGoogle Scholar
  27. Kass LR, Bloch K (1967) On the enzymatic synthesis of unsaturated fatty acids in Escherichia coli. Proc Natl Acad Sci 58:1168–1173CrossRefGoogle Scholar
  28. Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41:312–317CrossRefGoogle Scholar
  29. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636CrossRefGoogle Scholar
  30. Lowry RR, Tinsley IJ (1976) Rapid colorimetric determination of free fatty acids. J Am Oil Chem Soc 53:470–472CrossRefGoogle Scholar
  31. Lu X, Vora H, Khosla C (2008) Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng 10:333–339CrossRefGoogle Scholar
  32. Magnuson K, Jackowski S, Rock CO, Cronan JE (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol Mol Biol Rev 57:522–542Google Scholar
  33. Marr AG, Ingraham JL (1962) Effect of temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84:1260–1267Google Scholar
  34. Marrakchi H, Zhang YM, Rock CO (2002a) Mechanistic diversity and regulation of type II fatty acid synthesis. Biochem Soc Trans 30:1050–1055CrossRefGoogle Scholar
  35. Marrakchi H, Choi KH, Rock CO (2002b) A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J Biol Chem 277:44809–44816CrossRefGoogle Scholar
  36. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5CrossRefGoogle Scholar
  37. Mittelbach M, Remschmidt C (2004) Biodiesel—the comprehensive handbook. Boersedruck GmbH, GrazGoogle Scholar
  38. Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethyl acetals from lipids with boron trifluoride-methanol. J Lipid Res 5:600–608Google Scholar
  39. Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312CrossRefGoogle Scholar
  40. Park J, Kim D, Lee J, Park S, Kim Y, Lee J (2008) Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresour Technol 99:1196–1203CrossRefGoogle Scholar
  41. Ruiz JI, Ochoa B (1997) Quantification in the subnanomolar range of phospholipids and neutral lipids by monodimensional thin-layer chromatography and image analysis. J Lipid Res 38:1482–1489Google Scholar
  42. Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403:25–34CrossRefGoogle Scholar
  43. Tamalampudi S, Talukder MM, Hama S, Tanino T, Suzuki Y, Kondo A, Fukuda H (2007) Development of recombinant Aspergillus oryzae whole-cell biocatalyst expressing lipase-encoding gene from Candida Antarctica. Appl Microbiol Biotechnol 75:387–395CrossRefGoogle Scholar
  44. Wang H, Cronan JE (2004) Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF Homologues. J Biol Chem 279:34489–34495CrossRefGoogle Scholar
  45. Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30:2097–2103CrossRefGoogle Scholar
  46. Zhang Y, White SW, Rock CO (2006) Inhibiting bacterial fatty acid synthesis. J Biol Chem 281:17541–17544CrossRefGoogle Scholar
  47. Zhu L, Cheng J, Luo B, Feng S, Lin J, Wang S, Cronan JE, Wang H (2009) Functions of the Clostridium acetobutylicium FabF and FabZ proteins in unsaturated fatty acid biosynthesis. BMC Microbiol 9:119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yujin Cao
    • 1
  • Jianming Yang
    • 1
  • Mo Xian
    • 1
    Email author
  • Xin Xu
    • 1
  • Wei Liu
    • 1
  1. 1.Qingdao Institute of BioEnergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina

Personalised recommendations