Applied Microbiology and Biotechnology

, Volume 85, Issue 6, pp 1673–1685 | Cite as

New applications and performance of bioelectrochemical systems

  • Hubertus V. M. HamelersEmail author
  • Annemiek Ter Heijne
  • Tom H. J. A. Sleutels
  • Adriaan W. Jeremiasse
  • David P. B. T. B. Strik
  • Cees J. N. Buisman


Bioelectrochemical systems (BESs) are emerging technologies which use microorganisms to catalyze the reactions at the anode and/or cathode. BES research is advancing rapidly, and a whole range of applications using different electron donors and acceptors has already been developed. In this mini review, we focus on technological aspects of the expanding application of BESs. We will analyze the anode and cathode half-reactions in terms of their standard and actual potential and report the overpotentials of these half-reactions by comparing the reported potentials with their theoretical potentials. When combining anodes with cathodes in a BES, new bottlenecks and opportunities arise. For application of BESs, it is crucial to lower the internal energy losses and increase productivity at the same time. Membranes are a crucial element to obtain high efficiencies and pure products but increase the internal resistance of BESs. The comparison between production of fuels and chemicals in BESs and in present production processes should gain more attention in future BES research. By making this comparison, it will become clear if the scope of BESs can and should be further developed into the field of biorefineries.


Bioelectrochemical system Microbial fuel cell Microbial electrolysis cell Overpotential Coulombic efficiency 



This work was performed in the TTIW-cooperation framework of Wetsus, Centre of Excellence for sustainable water technology ( Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union European Regional Development Fund, the Province of Fryslân, the city of Leeuwarden, and the EZ-KOMPAS Program of the “Samenwerkingsverband Noord-Nederland.” The authors like to thank the participants of the research theme “Bio-energy” for the fruitful discussions and their financial support.


  1. Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78:409–418CrossRefGoogle Scholar
  2. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243CrossRefGoogle Scholar
  3. Bergel A, Féron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904CrossRefGoogle Scholar
  4. Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406CrossRefGoogle Scholar
  5. Call DF, Merrill MD, Logan BE (2009) High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ Sci Technol 43:2179–2183CrossRefGoogle Scholar
  6. Cao X, Huang X, Liang P, Boon N, Fan M, Zhang L, Zhang X (2009) A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ Sci 2:498–501CrossRefGoogle Scholar
  7. Chang IS et al (2009) Proceedings of the 2nd Microbial Fuel Cell Conference, GIST, Gwangju, Korea, 10–12 June 2009Google Scholar
  8. Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnol 21:1229–1232CrossRefGoogle Scholar
  9. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958CrossRefGoogle Scholar
  10. Chiao M, Lam KB, Lin L (2006) Micromachined microbial and photosynthetic fuel cells. J Micromech Microeng 16:2547–2553CrossRefGoogle Scholar
  11. Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360CrossRefGoogle Scholar
  12. Clauwaert P, Van Der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol 41:7564–7569CrossRefGoogle Scholar
  13. Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, Verstraete W (2008a) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913CrossRefGoogle Scholar
  14. Clauwaert P, Tolêdo R, van der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K (2008b) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57:575–579CrossRefGoogle Scholar
  15. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836CrossRefGoogle Scholar
  16. Dekker A, Ter Heijne A, Saakes M, Hamelers HVM, Buisman CJN (2009) Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ Sci Technol 43:9038–9042CrossRefGoogle Scholar
  17. De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103:296–304CrossRefGoogle Scholar
  18. De Schamphelaire L, Van Den Bossche L, Hai SD, Höfte M, Boon N, Rabaey K, Verstraete W (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42:3053–3058CrossRefGoogle Scholar
  19. Dutta PK, Rabaey K, Yuan Z, Keller J (2008) Spontaneous electrochemical removal of aqueous sulfide. Water Res 42:4965–4975CrossRefGoogle Scholar
  20. Fan Y, Hu H, Liu H (2007) Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J Power Sources 171:348–354CrossRefGoogle Scholar
  21. Freguia S, Rabaey K, Yuan Z, Keller J (2007) Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behavior during electricity generation. Env Sci Technol 41:2915–2921CrossRefGoogle Scholar
  22. Freguia S, Rabaey K, Yuan Z, Keller J (2008a) Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res 42:1387–1396CrossRefGoogle Scholar
  23. Freguia S, Rabaey K, Yuan Z, Keller J (2008b) Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42:7937–7943CrossRefGoogle Scholar
  24. Fu CC, Su CH, Hung TC, Hsieh CH, Suryani D, Wu WT (2009) Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis. Bioresour Technol 100:4183–4186CrossRefGoogle Scholar
  25. Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594:1–19CrossRefGoogle Scholar
  26. Hamelers HVM, Sleutels THJA, Jeremiasse AW, Post JW, Strik DPBTB, Rozendal RA (2009) Technological factors affecting BES performance and bottlenecks towards scale up. In: Rabaey K, Angenent LT, Schröder U, Keller J (eds) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA Publishing, LondonGoogle Scholar
  27. Harnisch F, Sievers G, Schröder U (2009) Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Appl Catal B: Environ 89:455–458CrossRefGoogle Scholar
  28. Hori Y, Murata A, Takahashi R, Suzuki S (1987) Electroreduction of CO to CH4 and C2H4 at a copper electrode in aqueous solutions at ambient temperature and pressure. J Am Chem Soc 109:5022–5023CrossRefGoogle Scholar
  29. Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J Chem Soc, Faraday Trans 85:2309–2326CrossRefGoogle Scholar
  30. Hu H, Fan Y, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int J Hydrogen Energy 34:8535–8542CrossRefGoogle Scholar
  31. Jeremiasse AW, Hamelers HVM, Buisman CJN (2009) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry. doi: 10.1016/j.bioelechem.2009.05.005
  32. Jeremiasse AW, Hamelers HVM, Kleijn JM, Buisman CJN (2009b) Use of biocompatible buffers to reduce the concentration overpotential for hydrogen evolution. Environ Sci Technol 43:6882–6887CrossRefGoogle Scholar
  33. Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152CrossRefGoogle Scholar
  34. Kim JRC, Cheng S, Oh SE, Logan BE (2007) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ Sci Technol 41:1004–1009CrossRefGoogle Scholar
  35. Lefebvre O, Ooi WK, Tang Z, Abdullah-Al-Mamun M, Chua DHC, Ng HY (2009) Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells. Bioresour Technol 100:4907–4910CrossRefGoogle Scholar
  36. Li Y, Lu A, Ding H, Jin S, Yan Y, Wang C, Zen C, Wang X (2009) Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochem Commun 11:1496–1499CrossRefGoogle Scholar
  37. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046CrossRefGoogle Scholar
  38. Logan BE (2004) Potential for wastewater treatment systems based on microbial fuel cells and biological hydrogen production. In: ACS National Meeting Book of Abstracts, American Chemical Society Annual Meeting, Philadelphia, 22–27 August Google Scholar
  39. Logan BE (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci Technol 52:31–37Google Scholar
  40. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  41. Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640CrossRefGoogle Scholar
  42. Merrill MD, Logan BE (2009) Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells. J Power Sources 191:203–208CrossRefGoogle Scholar
  43. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38:5809–5814CrossRefGoogle Scholar
  44. Niessen J, Schröder U, Harnisch F, Scholz F (2005) Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Lett Appl Microbiol 41:286–290CrossRefGoogle Scholar
  45. Peguin S, Delorme P, Goma G, Soucaille P (1994) Enhanced alcohol yields in batch cultures of clostridium acetobutylicum using a three-electrode potentiometric system with methyl viologen as electron carrier. Biotechnol Lett 16:269–274CrossRefGoogle Scholar
  46. Potter MC (1912) Electrical effects accompanying the decomposition of organic compounds. Proc Roy Soc (London) 84:260–267Google Scholar
  47. Rabaey K, Van De Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40:5218–5224CrossRefGoogle Scholar
  48. Rabaey K, Angenent LT, Schröder U, Keller J (2009) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA Publishing, LondonGoogle Scholar
  49. Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment—water interface. Environ Sci Technol 35:192–195CrossRefGoogle Scholar
  50. Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41:4781–4786CrossRefGoogle Scholar
  51. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75:3673–3678CrossRefGoogle Scholar
  52. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671CrossRefGoogle Scholar
  53. Rozendal RA, Hamelers HVM, Buisman CJN (2006a) Effects of membrane cation transport on pH and microbial fuel cell performance. Environ Sci Technol 40:5206–5211CrossRefGoogle Scholar
  54. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006b) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy 31:1632–1640CrossRefGoogle Scholar
  55. Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN (2007) Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res 41:1984–1994CrossRefGoogle Scholar
  56. Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN (2008a) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459CrossRefGoogle Scholar
  57. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008b) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634CrossRefGoogle Scholar
  58. Rozendal RA, Sleutels THJA, Hamelers HVM, Buisman CJN (2008c) Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. Water Sci Technol 57:1757–1762CrossRefGoogle Scholar
  59. Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Comm 11:1752–1755CrossRefGoogle Scholar
  60. Schaetzle O, Barriere F, Schröder U (2009) An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy Environ Sci 2:96–99CrossRefGoogle Scholar
  61. Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629CrossRefGoogle Scholar
  62. Scopus (2009) Elsevier BV, The Netherlands. Accessed 18 Aug 2009
  63. Selembo PA, Merrill MD, Logan BE (2009a) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources 190:271–278CrossRefGoogle Scholar
  64. Selembo PA, Perez JM, Lloyd WA, Logan BE (2009b) High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int J Hydrogen Energy 34:5373–5381CrossRefGoogle Scholar
  65. Shin H, Zeikus J, Jain M (2002) Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 58:476–481CrossRefGoogle Scholar
  66. Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN (2009a) Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Int J Hydrogen Energy 34:3612–3620CrossRefGoogle Scholar
  67. Sleutels THJA, Lodder R, Hamelers HVM, Buisman CJN (2009b) Improved performance of porous bio-anodes in microbial electrolysis cells by enhanced mass and charge transport. Int J Hydrogen Energy. doi: 10.1016/j.ijhydene.2009.09.089
  68. Steinbusch KJJ, Hamelers HVM, Buisman CJN (2008) Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res 42:4059–4066CrossRefGoogle Scholar
  69. Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2009) Bio-electrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol. doi: 10.1021/es902371e Google Scholar
  70. Strik DPBTB (2009) PlantPower—living plants in microbial fuel cells for clean, renewable, sustainable, efficient, in-situ bioenergy production. Accessed 18 Aug 2009
  71. Strik DPBTB, Hamelers HVM, Snel JFH, Buisman CJN (2008a) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 32:870–876CrossRefGoogle Scholar
  72. Strik DPBTB, Terlouw H, Hamelers HVM, Buisman CJN (2008b) Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl Microbiol Biotechnol 81:659–668CrossRefGoogle Scholar
  73. Ter Heijne A, Hamelers HVM, De Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ Sci Technol 40:5200–5205CrossRefGoogle Scholar
  74. Ter Heijne A, Hamelers HVM, Buisman CJN (2007) Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Environ Sci Technol 41:4130–4134CrossRefGoogle Scholar
  75. Ter Heijne A, Hamelers HVM, Saakes M, Buisman CJN (2008) Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim Acta 53:5697–5703CrossRefGoogle Scholar
  76. Topcagic S, Minteer SD (2006) Development of a membraneless ethanol/oxygen biofuel cell. Electrochim Acta 51:2168–2172CrossRefGoogle Scholar
  77. Torres CI, Marcus AK, Rittmann BE (2008) Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol Bioeng 100:872–881CrossRefGoogle Scholar
  78. Vetter KE (1967) Electrochemical kinetics, theoretical and experimental aspects. Academic, New YorkGoogle Scholar
  79. Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024CrossRefGoogle Scholar
  80. Wang G, Huang L, Zhang Y (2008a) Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett 30:1959–1966CrossRefGoogle Scholar
  81. Wang X, Feng Y, Lee JH (2008b) Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Sci Technol 57:1117–1121CrossRefGoogle Scholar
  82. Wang A, Liu W, Cheng S, Xing D, Zhou J, Logan BE (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int J Hydrogen Energy 34:3653–3658CrossRefGoogle Scholar
  83. Yeager E (1983) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527CrossRefGoogle Scholar
  84. Yu EH, Cheng S, Logan BE, Scott K (2009) Electrochemical reduction of oxygen with iron phthalocyanine in neutral media. J Appl Electrochem 39:705–711CrossRefGoogle Scholar
  85. Zhao F, Rahunen N, Varcoe JR, Chandra A, Avignone-Rossa C, Thumser AE, Slade RCT (2008) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ Sci Technol 42:4971–4976CrossRefGoogle Scholar
  86. Zhao F, Rahunen N, Varcoe JR, Roberts AJ, Avignone-Rossa C, Thumser AE, Slade RCT (2009a) Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosens Bioelectron 24:1931–1936CrossRefGoogle Scholar
  87. Zhao F, Slade RCT, Varcoe JR (2009b) Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 38:1926–1939CrossRefGoogle Scholar
  88. Zuo Y, Cheng S, Call D, Logan BE (2007) Tubular membrane cathodes for scalable power generation in microbial fuel cells. Environ Sci Technol 41:3347–3353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Hubertus V. M. Hamelers
    • 1
    Email author
  • Annemiek Ter Heijne
    • 1
    • 2
  • Tom H. J. A. Sleutels
    • 1
    • 2
  • Adriaan W. Jeremiasse
    • 1
    • 2
    • 3
  • David P. B. T. B. Strik
    • 1
  • Cees J. N. Buisman
    • 1
    • 2
  1. 1.Sub-Department of Environmental TechnologyWageningen UniversityWageningenThe Netherlands
  2. 2.WetsusCentre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
  3. 3.Laboratory of Physical Chemistry and Colloid ScienceWageningen UniversityWageningenThe Netherlands

Personalised recommendations