Applied Microbiology and Biotechnology

, Volume 86, Issue 2, pp 721–729 | Cite as

Inhibitory effect of hydroxycinnamic acids on Dekkera spp.

  • Victoria Harris
  • Vladimir Jiranek
  • Christopher M. Ford
  • Paul R. Grbin
Applied Microbial and Cell Physiology


Simple phenolic components of wine, hydroxycinnamic acids (HCAs) are known to have antimicrobial properties. This study sought to determine the potential of ferulic acid as an antifungal agent for the control of Dekkera. Growth was inhibited by all HCAs examined in this study, with ferulic acid being the most potent at all concentrations. In the presence of ethanol, the inhibitory effects of ferulic acid were amplified. Scanning electron microscopy images reveal cellular damage upon exposure to ferulic acid. Thus, manipulation of ferulic acid concentrations could be of industrial significance for control of Dekkera and may be the basis for differences in susceptibility of wines to Dekkera spoilage.


Antimicrobial Brettanomyces Spoilage Scanning electron microscopy Phenolic acids Wine 


  1. Adams A, Gottschling DE, Kaiser CA, Stearns T (1997) Techniques and protocols #3 yeast DNA isolations. In: Dickerson MM (ed) Methods in genetics. Cold Spring Harbour Laboratory Press, New York, pp 107–108Google Scholar
  2. Auw JM, Blanco V, O’Keefe SF, Sims CA (1996) Effect of processing on the phenolics and color of Cabernet Sauvignon, Chambourcin, and Noble wines and juices. Am J Enol Vitic 47:279–286. doi:10458.35400006414677.0060 Google Scholar
  3. Avar P, Nikfardjam MSP, Kunsági-Máté S, Montskó G, Szabó Z, Böddi K, Ohmacht R, Márk L (2007) Investigation of phenolic components of Hungarian wines. Int J Mol Sci 8:1028–1038. doi:10.3390/18101028 CrossRefGoogle Scholar
  4. Baranowski JD, Nagel CW (1983) Properties of alkyl hydroxycinnamates and effects on Pseudomonas fluorescens. Appl Environ Microbiol 45:218–222. doi:0099-2240/83/010218-05502.00/0 Google Scholar
  5. Baranowski JD, Davidson PM, Nagel CW, Branen AL (1980) Inhibition of Saccharomyces cerevisiae by naturally occurring hydroxycinnamates. J Food Sci 45:592–594. doi:10.1111/j.1365-2621tb04107 CrossRefGoogle Scholar
  6. Barata A, Caldeira J, Botelheiro R, Pagliara D, Malfeito-Ferreira M, Loureiro V (2007) Survival patterns of Dekkera bruxellensis in wines and inhibitory effect of sulphur dioxide. Int J Food Microbiol 121:201–207. doi:10.1016/jifoodmicro.2007.11.020 CrossRefGoogle Scholar
  7. Bennis S, Chami F, Chami N, Bouchikhi T, Remmal A (2004) Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett Appl Microbiol 38:454–458. doi:10.1111/j.1472-765x2004.01511x CrossRefGoogle Scholar
  8. Campos FM, Couto JA, Hogg TA (2003) Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J Appl Microbiol 94:167–174. doi:7415,34500011082402.0020 CrossRefGoogle Scholar
  9. Chatonnet P, Dubourdieu D, Boidron JN, Pons M (1992) The origin of ethylphenols in wines. J Sci Food Agric 60:165–178. doi:10.1002/jsfa.2740600205 CrossRefGoogle Scholar
  10. Chatonnet P, Dubourdieu D, Boidron JN, Lavigne V (1993) Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J Sci Food Agric 62:191–202. doi:2634,34500003652395.0120 CrossRefGoogle Scholar
  11. Chatonnet P, Dubourdieu D, Boidron JN (1995) The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am J Enol Vitic 46:463–468. doi:10458.35400005526851.0070 Google Scholar
  12. Davidson PM, Branen AL (1993) Antimicrobials in foods. Marcel Dekker, New YorkGoogle Scholar
  13. du Toit WJ, Pretorius IS, Lonvaud-Funel A (2005) The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J Appl Microbiol 98:862–871. doi:741535400012689452.0090 CrossRefGoogle Scholar
  14. Edlin DAN, Narbad A, Dickinson JR, Lloyd D (1995) The biotransformation of simple phenolic compounds by Brettanomyces anomalus. FEMS Microbiol Lett 125:311–315. doi:17567A,35400005805388.0280 CrossRefGoogle Scholar
  15. García-Ruiz A, Bartolomé B, Martínez-Rodríguez AJ, Pueyo E, Martín-Álvarez PJ, Moreno-Arribas MV (2008) Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control 19:835–841. doi:101016/jfoodcont.2007.08.018 CrossRefGoogle Scholar
  16. Grbin PR, Henschke PA (2000) Mousy off-flavour production in grape juice and wine by Dekkera and Brettanomyces yeast. Aust J Grape Wine Res 6:255–262. doi:10.1111/j1755-0238200tb00186.x CrossRefGoogle Scholar
  17. Grbin PR, Herderich M, Markides A, Lee T, Henschke P (2007) The role of lysine amino nitrogen in the biosynthesis of mousy off-flavor compounds by Dekkera anomala. J Agric Food Chem 55:10872–10879. doi:10.1021/jf071243e CrossRefGoogle Scholar
  18. Guillamón JM, Sabaté J, Barrio E, Cano J, Qeurol A (1998) Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch Microbiol 169:387–392. doi:10.1007/s002030050587 CrossRefGoogle Scholar
  19. Harris V, Ford CM, Jiranek V, Grbin PR (2008) Dekkera and Brettanomyces growth and utilisation of hydroxycinnamic acids in synthetic media. Appl Microbiol Biotechnol 78:997–1006. doi:10.1007/s00253-007-1328-7 CrossRefGoogle Scholar
  20. Harris V, Ford CM, Jiranek V, Grbin PR (2009) Survey of enzyme activity responsible for phenolic off-flavour production by Dekkera and Brettanomyces yeast. Appl Microbiol Biotechnol 81:1117–1127. doi:10.1007/s00253-008-1708-7 CrossRefGoogle Scholar
  21. Heresztyn T (1986) Metabolism of volatile phenolic compounds from hydroxycinnamic acids by Brettanomyces yeast. Arch Microbiol 146:96–98. doi:10.1007/bf00690165 CrossRefGoogle Scholar
  22. Kalathenos P, Sutherland JP, Roberts TA (1995) Resistance of some wine spoilage yeasts to combinations of ethanol and acids present in wine. J Appl Bacteriol 78:245–250. doi:7415,35400005562518.0060 Google Scholar
  23. Kallithraka S, Tsoutsouras E, Tzourou E, Lanaridis P (2006) Principal phenolic compounds in Greek red wines. Food Chem 99:784–793. doi:10.1016/jfoodchem.2005.07.059 CrossRefGoogle Scholar
  24. Loureiro V, Malfeito-Ferreira M (2003) Spoilage yeasts in the wine industry. Int J Food Microbiol 86:23–50. doi:10.1016/s0168-1605(03)00246-0 CrossRefGoogle Scholar
  25. Macheix JJ, Fleuriet A, Billiot J (1990) Fruit phenolics. CRC, Boca RatonGoogle Scholar
  26. Maga JA (1978) Simple phenol and phenolic compounds in food flavor. Crit Rev Food Sci 10:323–372CrossRefGoogle Scholar
  27. Morata A, Gomez-Cordoves MC, Calderon F, Suarez JA (2006) Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. Int J Food Microbiol 106:123–129. doi:10.1016/jifoodmicro.2005.05.019 CrossRefGoogle Scholar
  28. Ogiwara T, Satoh K, Kadoma Y, Murakami Y, Unten S, Atsumi T, Sakagami H, Fujisawa S (2002) Radical scavenging activity and cytotoxicity of ferulic acid. Anticancer Res 22:2711–2717. doi:19426,35400010714237.0270 Google Scholar
  29. Oszmianski J, Romeyer FM, Sapis JC, Macheix JJ (1986) Grape seed phenolics: extraction as affected by some conditions occurring during wine processing. Am J Enol Vitic 37:7–12Google Scholar
  30. Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269. doi:10.1002/jsfa1873 CrossRefGoogle Scholar
  31. Ravn H, Andary C, Kovacs G, Moelgaard P (1989) Caffeic acid esters as in vitro inhibitors of plant pathogenic bacteria and fungi. Biochem Syst Ecol 17:175–184. doi:10.1016/0305-1978(89)90076-8 CrossRefGoogle Scholar
  32. Reguant C, Bordons A, Arola L, Rozes N (2000) Influence of phenolic compounds on the physiology of Oenococcus oeni from wine. J Appl Microbiol 88:1065–1071. doi:10.1046/j.1365-2672.2000.01075.x CrossRefGoogle Scholar
  33. Rodrigues F, Goncalves G, Pereira-da-Silva S, Malfeito-Ferreira M, Loureiro V (2001) Development and use of a new medium to detect yeasts of the genera Dekkera /Brettanomyces. J Appl Microbiol 90:588–599. doi:10.1046/j1365-2672.2001.01275.x CrossRefGoogle Scholar
  34. Sakai S, Kawamata H, Kogure T, Mantani N, Terasawa K, Umatake M, Ochiai H (1999) Inhibitory effect of ferulic acid and isoferulic acid on the production of macrophage inflammatory protein-2 in response to respiratory syncytial virus infection in RAW264. 7 cells. Med Inflamm 8:173–175CrossRefGoogle Scholar
  35. Silva P, Cardoso H, Geros H (2004) Studies on the wine spoilage capacity of Brettanomyces/Dekkera spp. Am J Enol Vitic 55:65–72Google Scholar
  36. Smid EJ, Gorris LGM (1999) Natural antimicrobials for food preservation. In: Rahman MS (ed) Handbook of food preservation. CRC, New York, pp 285–308Google Scholar
  37. Soleas GJ, Dam J, Carey M, Goldberg DM (1997) Toward the fingerprinting of wines: cultivar-related patterns of polyphenolic constituents in Ontario wines. J Agric Food Chem 45:3871–3880. doi:10.1021/jf970183h CrossRefGoogle Scholar
  38. Somers TC, Verette E, Pocock KF (1987) Hydroxycinnamate esters of Vitis vinifera: changes during white vinification, effects of exogenous enzymic hydrolysis. J Sci Food Agric 40:67–78. doi:10.1002/jsfa.2740400109 CrossRefGoogle Scholar
  39. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin BioChem Nutr 40:92–100. doi:103164/jcbn.40.92 CrossRefGoogle Scholar
  40. Stead D (1993) The effect of hydroxycinnamic acids on the growth of wine-spoilage lactic acid bacteria. J Appl Bacteriol 75:135–141. doi:10.1111/j.1365-2672.1993.tb02758.x Google Scholar
  41. Stead D (1995) The effect of hydroxycinnamic acids and potassium sorbate on the growth of 11 strains of spoilage yeasts. J Appl Bacteriol 78:82–87. doi:10.1111/j.1365-2672.1995tb01677.x Google Scholar
  42. van Beek S, Priest FG (2000) Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation. Appl Environ Microbiol 66:5322–5328. doi:719535400009349011.0350 CrossRefGoogle Scholar
  43. van der Walt JP, van Kerken AE (1959) The wine yeasts of the Cape. II. The occurrence of Brettanomyces intermedius and Brettanomyces schanderlii in South African table wines. Antonie Leeuwenhoek 25:145–151. doi:10.1007/bf2538426 CrossRefGoogle Scholar
  44. Van Sumere CF, Cottenie J, De Greef J, Kint J (1971) Biochemical studies in relation to the possible germination regulatory role of naturally occurring coumarin and phenolics. Recent Adv Phytochem 4:165–221Google Scholar
  45. Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554. doi:7332.35400011797959.0190 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Victoria Harris
    • 1
  • Vladimir Jiranek
    • 1
  • Christopher M. Ford
    • 1
  • Paul R. Grbin
    • 1
  1. 1.School of Agriculture, Food and WineThe University of AdelaideAdelaideAustralia

Personalised recommendations