Advertisement

Applied Microbiology and Biotechnology

, Volume 85, Issue 3, pp 491–506 | Cite as

Fermentative production of branched chain amino acids: a focus on metabolic engineering

  • Jin Hwan Park
  • Sang Yup LeeEmail author
Mini-Review

Abstract

The branched chain amino acids (BCAAs), l-valine, l-leucine, and l-isoleucine, have recently been attracting much attention as their potential to be applied in various fields, including animal feed additive, cosmetics, and pharmaceuticals, increased. Strategies for developing microbial strains efficiently producing BCAAs are now in transition toward systems metabolic engineering from random mutagenesis. The metabolism and regulatory circuits of BCAA biosynthesis need to be thoroughly understood for designing system-wide metabolic engineering strategies. Here we review the current knowledge on BCAAs including their biosynthetic pathways, regulations, and export and transport systems. Recent advances in the development of BCAA production strains are also reviewed with a particular focus on l-valine production strain. At the end, the general strategies for developing BCAA overproducers by systems metabolic engineering are suggested.

Keywords

Branched chain amino acids (BCAAs) l-Valine l-Leucine l-Isoleucine Systems metabolic engineering Fermentation 

Notes

Acknowledgments

This work was supported by the Korea–Australia Collaborative Research Project on the Development of Sucrose-Based Bioprocess Platform (N02071165) from the Korean Ministry of Knowledge Economy and by the Korean Systems Biology Program (No. M10309020000-03B5002-00000) from the Ministry of Education, Science and Technology (MEST). Further supports by LG Chem Chair Professorship, Microsoft, World Class University Program of MEST, and IBM-SUR program are greatly appreciated.

References

  1. Alexander DC, Anders CL, Lee L, Jensen SE (2007) pcd Mutants of Streptomyces clavuligerus still produce cephamycin C. J Bacteriol 189:5867–5874CrossRefGoogle Scholar
  2. Anderson JJ, Oxender DL (1978) Genetic separation of high- and low-affinity transport systems for branched-chain amino acids in Escherichia coli K-12. J Bacteriol 136:168–174Google Scholar
  3. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–90CrossRefGoogle Scholar
  4. Barak Z, Chipman DM, Gollop N (1987) Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria. J Bacteriol 169:3750–3756Google Scholar
  5. Bartek T, Makus P, Klein B, Lang S, Oldiges M (2008) Influence of l-isoleucine and pantothenate auxotrophy for l-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst Eng 31:217–225CrossRefGoogle Scholar
  6. Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ (2007) l-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73:2079–2084CrossRefGoogle Scholar
  7. Blombach B, Arndt A, Auchter M, Eikmanns BJ (2008a) l-valine production during growth of pyruvate dehydrogenase complex-deficient Corynetacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75:1197–1200CrossRefGoogle Scholar
  8. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008b) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79:471–479CrossRefGoogle Scholar
  9. Changeux JP (1963) Allosteric interactions on biosynthetic l-threonine deaminase from Escherichia coli K-12. Cold Spring Harbor Symp Quant Biol 28:497–504Google Scholar
  10. Colón GE, Nguyen TT, Jetten MSM, Sinskey AJ, Stephanopoulos G (1995) Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer. Appl Microbiol Biotechnol 43:482–488CrossRefGoogle Scholar
  11. Denoya CD, Fedechko RW, Hafner EW, McArthur HAI, Morgenstern MR, Skinner DD, Stutzman-Engwall K, Wax RG, Wernau WC (1995) A second branched-chain α-keto acid dehydrogenase gene cluster (bkdFGH) from Streptomyces avermitilis: its relationship to avermectin biosynthesis and the construction of a bkdF mutant suitable for the production of novel antiparasitic avermectins. J Bacteriol 177:3504–3511Google Scholar
  12. Dorman DE, Paschal JW, Nakatsukasa WM, Huckstep LL, Neuss N (1976) The use of 13C-NMR spectroscopy in biosynthetic studies. II. Biosynthesis of narasin, a new polyether ionophore from fermentation of Streptomyces aureofaciens. Helv Chim Acta 59:2625–2634CrossRefGoogle Scholar
  13. Ebbighausen H, Weil B, Krämer R (1989) Transport of branched chain amino acids in Corynebacterium glutamicum. Arch Microbiol 151:238–244CrossRefGoogle Scholar
  14. Eggeling I, Cordes C, Eggeling L, Sahm H (1987) Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of alfa-ketobutyrate to l-isoleucine. Appl Microbiol Biotechnol 25:346–351CrossRefGoogle Scholar
  15. Eikmanns B, Kleinertz E, Liebel W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for gene cloning, controlled gene expression, and promoter probing. Gene 102:93–98CrossRefGoogle Scholar
  16. Elišáková V, Pátek M, Holátko J, Nešvera J, Leyval D, Goergen J, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213CrossRefGoogle Scholar
  17. Engels V, Wendisch VF (2007) The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J Bacteriol 189:2955–2966CrossRefGoogle Scholar
  18. Eoyang L, Silverman PM (1986) Role of small subunit (IlvN polypeptide) of acetohydroxyacid synthase I from Escherichia coli K-12 in sensitivity of the enzyme to valine inhibition. J Bacteriol 185:5442–5451Google Scholar
  19. Gaigalat L, Schlüter JP, Hartmann M, Mormann S, Tauch A, Pühler A, Kalinowski J (2007) The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol 8:104CrossRefGoogle Scholar
  20. Garg RP, Qian XL, Alemany LB, Moran S, Parry RJ (2008) Investigations of valanimycin biosynthesis: elucidation of the role of seryl-tRNA. Proc Natl Acad Sci USA 105:6543–6547CrossRefGoogle Scholar
  21. Gollop N, Chipman DM, Barak Z (1983) Inhibition of acetohydroxy acid synthase by leucine. Biochim Biophys Acta 748:34–39Google Scholar
  22. Gusyatiner MM, Lunts MG, Kozlov YI, Ivanovskaya LV, Voroshilova EB (2002) DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine. US Patent 6,403,342Google Scholar
  23. Gusyatiner MM, Voroshilova EB, Rostova YG, Ivanovskaya LV, Lunts MG, Khourges EM (2004) Method for producing l-leucine. US Patent 2004/0091980 A1Google Scholar
  24. Haney SA, Plakto JV, Oxender DL, Calvo JM (1992) Lrp, a leucine-responsive protein, regulates branched-chain amino acid transport genes in Escherichia coli. J Bacteriol 174:108–115Google Scholar
  25. Hashiguchi K, Kojima H, Sato K, Sano K (1997) Effects of an Escherichia coli ilvA mutant gene encoding feedback-resistant threonine deaminase on l-isoleucine production by Brevibacterium flavum. Biosci Biotechnol Biochem 61:105–108CrossRefGoogle Scholar
  26. Hashiguchi K, Matsui H, Kurahashi O (1999a) Effects of a feedback-resistant aspartokinase III gene on l-isoleucine production in Escherichia coli K-12. Biosci Biotechnol Biochem 63:2023–2024CrossRefGoogle Scholar
  27. Hashiguchi K, Takesada H, Suzuki E, Matsui H (1999b) Construction of an l-isoleucine overproducing strain of Escherichia coli K-12. Biosci Biotechnol Biochem 63:672–679CrossRefGoogle Scholar
  28. Herold K, Xu Z, Gollmick FA, Gräfe U, Hertweck C (2004) Biosynthesis of cervimycin C, an aromatic polyketide antibiotic bearing an unusual dimethylmalonyl moiety. Org Biomol Chem 2:2411–2414CrossRefGoogle Scholar
  29. Holátko J, Elišáková V, Prouza M, Sobotka M, Nešvera J, Pátek M (2009) Metabolic engineering of the l-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210CrossRefGoogle Scholar
  30. Hung SP, Baldi P, Hatfield GW (2002) Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. J Biol Chem 277:40309–40323CrossRefGoogle Scholar
  31. Igarashi K, Kashiwagi K (1999) Polyamine transport in bacteria and yeast. Biochem J 344:633–42CrossRefGoogle Scholar
  32. Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35Google Scholar
  33. Ikeda S, Fujita I, Yoshinaga F (1976) Screening of l-isoleucine producers among ethionine resistant mutants of l-threonine producing bacteria. Agric Biol Chem 40:511–516Google Scholar
  34. Kase H, Nakayama K (1977) l-Isoleucine production by analog-resistant mutants derived from threonine-producing strain of Corynebacterium glutamicum. Agric Biol Chem 41:109–116Google Scholar
  35. Katashkina JY, Lunts MG, Doroshenko VG, Fomina SA, Skorokhodova AY, Ivanovskaya LV, Mashko SV (2006) Method for producing an l-amino acid using a bacterium with an optimized level of gene expression. US Patent 2006/0063240 A1Google Scholar
  36. Kelle R, Hermann T, Weuster-Botz D, Eggeling L, Krämer R, Wandrey C (1996) Glucose-controlled l-isoleucine fed-batch production with recombinant strains of Corynebacterium glutamicum. J Biotechnol 50:123–136CrossRefGoogle Scholar
  37. Kennerknecht N, Sahm H, Yen MR, Pátek M, Saier MH Jr, Eggeling L (2002) Export of l-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956CrossRefGoogle Scholar
  38. Kennerknecht N, Sahm H, Eggeling L, Pfefferie W (2005) Nucleotide sequences coding for the export of branched-chain amino acids, process for the isolation thereof and use thereof. US Patent 6,841,360Google Scholar
  39. Kisumi M, Kato JK, Komatsubara S, Chibata I (1970) Increase in isoleucine accumulation by α-aminobutyric acid-resistant mutants of Serratia marcescens. Appl Microbiol 21:569–574Google Scholar
  40. Kisumi M, Komatsubara S, Chibata I (1977) Enhancement of isoleucine hydroxamate-mediated growth inhibition and improvement of isoleucine-producing strains of Serratia marcescens. Appl Environ Microbiol 34:647–653Google Scholar
  41. Kopecky J, Janata J, Pospisil S, Felsberg J, Spizek J (1999) Mutations in two distinct regions in acetolactate synthase regulatory subunit from Streptomyces cinnamonensis result in the lack of sensitivity to end-product inhibition. Biochem Biophys Res Commun 266:162–166Google Scholar
  42. Kutukova EA, Livshits VA, Altman IP, Ptitsyn LR, Zyiatdinov MH, Tokmakova IL, Zakataeva NP (2005) The yeaS (leuE) gene of Escherichia coli encodes an exprter of leucine, and the Lrp protein regulates its expression. FEBS Lett 579:4629–4634CrossRefGoogle Scholar
  43. Lawther RP, Hatfield GW (1980) Multivalent translational control of transcription termination at attenuator of ilvGMEDA operon of Escherichia coli K-12. Proc Natl Acad Sci USA 77:1862–1866CrossRefGoogle Scholar
  44. Lawther RP, Calhoun DH, Adams CW, Hauser CA, Gray J, Hatfield GW (1981) Molecular basis of valine resistance in Escherichia coli K-12. Proc Natl Acad Sci USA 78:922–925CrossRefGoogle Scholar
  45. Lawther RP, Wek RC, Lopes JM, Pereira R, Taillon BE, Hatfield GW (1987) The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res 15:2137–2155CrossRefGoogle Scholar
  46. Lee SY, Lee D-Y, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358CrossRefGoogle Scholar
  47. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 3:149CrossRefGoogle Scholar
  48. Livshits VA, Debabov VG, Fedorovva AO, Pavlovva ZN, Shakulov RS, Bachina TA, Khurges EM (1997) Strains of Escherichia coli which produce isoleucine or valine and a method for their production. US Patent 5,658,766Google Scholar
  49. Livshits VA, Doroshenko VG, Gorshkova NV, Belaryeva AV, Ivanovskaya LV, Khourges EM, Akhverdian VZ, Gusyatiner MM, Kozlov YI (2004) Mutant ilvH gene and method for producing L-valine. US Patent 6,737,255Google Scholar
  50. Marasco R, Varcamonti M, La Cara F, Ricca E, DeFelice M, Sacco M (1994) In vivo footprinting analysis of Lrp binding to the ilvIH promoter region of Escherichia coli. J Bacteriol 176:5197–5201Google Scholar
  51. Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on l-valine production. Appl Environ Microbiol 74:7457–7462CrossRefGoogle Scholar
  52. Morbach S, Sahm H, Eggeling L (1995) Use of feedback-resistant threonine dehydratases of Corynebacterium glutamicum to increase carbon flux towards l-isoleucine. Appl Environ Microbiol 61:4315–4320Google Scholar
  53. Morbach S, Kelle R, Winkels S, Sahm H, Eggeling L (1996a) Engineering the homoserine dehydrogenase and threonine dehydratase control points to analyse flux towards l-isoleucine in Corynebacterium glutamicum. Appl Microbiol Biotechnol 45:612–620CrossRefGoogle Scholar
  54. Morbach S, Sahm H, Eggeling L (1996b) l-Isoleucine production with Corynebacterium glutamicum: further flux increase and limitation of export. Appl Environ Microbiol 62:4345–4351Google Scholar
  55. Morbach S, Junger C, Sahm H, Eggeling L (2000) Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 90:501–507Google Scholar
  56. Omura S, Tsuzuki K, Tanaka Y, Sakakibara H, Aizawa M, Lukacs G (1983) Valine as a precursor of n-butyrate unit in the biosynthesis of macrolide aglycone. J Antibiot 36:614–616Google Scholar
  57. Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19:454–460CrossRefGoogle Scholar
  58. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104:7797–7802CrossRefGoogle Scholar
  59. Park JH, Lee SY, Kim TY, Kim HU (2008) Application of systems biology for bioprocess development. Trends Biotechnol 26:404–412CrossRefGoogle Scholar
  60. Patte JC (1996) Biosynthesis of threonine and lysine. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM, Washington, pp 528–541Google Scholar
  61. Peng Z, Fang J, Li J, Liu L, Du G, Chen J, Wang X, Ning J, Cai L (2009) Combined dissolved oxygen and pH control strategy to improve the fermentative production of l-isoleucine by Brevibacterium lactofermentum. Bioprocess Biosyst Eng. doi: 10.1007/s00449-009-0329-6 Google Scholar
  62. Platko JV, Willins DA, Calvo JM (1990) The ilvIH operon Escherichia coli is positively regulated. J Bacteriol 172:4563–4570Google Scholar
  63. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250CrossRefGoogle Scholar
  64. Rhee KY, Parekh BS, Hatfield GW (1996) Leucine-responsive regulatory protein-DNA interactions in the leader region of the ilvGMEDA operon of Escherichia coli. J Biol Chem 271:26499–26507CrossRefGoogle Scholar
  65. Ricca E, Limauro D, Lago CT, Felice MD (1988) Enhanced acetohydroxy acid synthase III activity in an ilvH mutant of Escherichia coli K-12. J Bacteriol 170:5197–5199Google Scholar
  66. Ruklisha M, Paegle L, Denina I (2007) l-Valine biosynthesis during batch and fed-batch cultivations of Corynebacterium glutamicum: relationship between changes in bacterial growth rate and intracellular metabolism. Process Biochem 42:634–640CrossRefGoogle Scholar
  67. Sahm H, Eggeling L, Eikmanns B, Kramer R (1995) Metabolic design in amino acid producing bacterium Corynebacterium glutamicum. FEMS Microbiol Rev 16:243–252CrossRefGoogle Scholar
  68. Tabolina EA, Rybak KV, Khourges EM, Voroshilova EB, Gusyatiner MM (2005) Methods for producing l-amino acids using bacteria belonging to the genus Escherichia. US Patent 2005/0239175Google Scholar
  69. Taillon BE, Little R, Lawther RP (1988) Analysis of the functional domains of biosynthetic threonine deaminase by comparison of the amino acid sequence of three wild-type alleles to the amino acid sequence of biodegradative threonine deaminase. Gene 63:245–252CrossRefGoogle Scholar
  70. Tanaka Y, Teramoto H, Inui M, Yukawa H (2008) Regulation of expression of general compounds of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:309–318CrossRefGoogle Scholar
  71. Tauch A, Hermann T, Burkovski A, Krämer R, Pühler A, Kalinowski J (1998) Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product. Arch Microbiol 169:303–312CrossRefGoogle Scholar
  72. Ternbach MB, Bollman C, Wandrey C, Takors R (2005) Application of model discriminating experimental design for modeling and development of a fermentative fed-batch l-valine production process. Biotechnol Bioeng 91:356–68CrossRefGoogle Scholar
  73. Tomita F, Yokota A, Hashiguchi K, Ishigooka M, Kurahashi O (2001) Methods for producing L-valine and L-leucine. US Patent 6,214,591Google Scholar
  74. Tsuchida T, Momose H (1986) Improvement of an l-leucine-producing mutant of Brevibacterium lactofermentum 2256 by genetically desensitizing it to α-acetohydroxy acid synthetase. Appl Environ Microbiol 51:1024–1027Google Scholar
  75. Umbarger HE (1996) Biosynthesis of the branched-chain amino acids. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM, Washington, pp 442–457Google Scholar
  76. Vrijbloed JW, Zerbe-Burkhardt K, Ratnatilleke A, Grubelnik-Leiser A, Robinson JA (1999) Insertional inactivation of methylmalonyl coenzyme A (CoA) mutase and isobutyryl-CoA mutase genes in Streptomyces cinnamonensis: influence on polyketide antibiotic biosynthesis. J Bacteriol 181:5600–5605Google Scholar
  77. Vyazmensky M, Sella C, Barak Z, Chipman DM (1996) Isolation and characterization of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Biochemistry 35:10339–10346CrossRefGoogle Scholar
  78. Wada M, Hijikata N, Aoki R, Takesue N, Yokota A (2008) Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci Biotechnol Biochem 72:2959–2965CrossRefGoogle Scholar
  79. Wang Q, Calvo JM (1993) Lrp, a global regulatory protein of Escherichia coli, binds cooperatively to multiple sites and activates transcription of ilvIH. J Mol Biol 229:306–318CrossRefGoogle Scholar
  80. Wek RC, Hatfield GW (1988) Transcriptional activation at adjacent operators in the divergent-overlapping ilvY and ilvC promoters of Escherichia coli. J Mol Biol 203:643–663CrossRefGoogle Scholar
  81. Wek RC, Hauser CA, Hatfield GW (1985) The nucleotide sequence of the ilvBN operon of Escherichia coli: sequence homologies of the acetohydroxy acid synthase isozymes. Nucleic Acids Res 13:3995–4010CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.BioProcess Engineering Research CenterKAISTDaejeonRepublic of Korea
  2. 2.Center for Systems and Synthetic BiotechnologyKAISTDaejeonRepublic of Korea
  3. 3.Institute for the BioCenturyKAISTDaejeonRepublic of Korea
  4. 4.Department of Bio and Brain EngineeringKAISTDaejeonRepublic of Korea
  5. 5.Bioinformatics Research CenterKAISTDaejeonRepublic of Korea
  6. 6.Department of Biological SciencesKAISTDaejeonRepublic of Korea

Personalised recommendations