Advertisement

Applied Microbiology and Biotechnology

, Volume 85, Issue 4, pp 861–867 | Cite as

High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?

  • Babiker M. A. Abdel-Banat
  • Hisashi Hoshida
  • Akihiko Ano
  • Sanom Nonklang
  • Rinji Akada
Mini-Review

Abstract

The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5°C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies.

Keywords

Kluyveromyces marxianus Saccharomyces cerevisiae Fuel Ethanol Cost 

Notes

Acknowledgments

We are greatly indebted to Yutaka Mitani, Sapporo Breweries Ltd. for helpful discussions. We also thank Yuko Saito, Akiko Nishida, and Yukie Misumi for their technical assistance. The studies listed in this review have been supported by grants from the Program for Promotion of Basic Research Activities for Innovative Bioscience (PROBRAIN), the New Energy and Industrial Technology Development Organization (NEDO), and the Scientific Cooperation Program between the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT).

References

  1. Abdel-fattah WR, Fadil M, Nigam P, Banat IM (2000) Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnol Bioeng 68:531–535CrossRefGoogle Scholar
  2. Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushita K (2003) New developments in oxidative fermentation. Appl Microbiol Biotechnol 60:643–653Google Scholar
  3. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568CrossRefGoogle Scholar
  4. Anderson PJ, McNeil K, Watson K (1986) High-efficiency carbohydrate fermentation to ethanol at temperatures above 40°C by Kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl Environ Microbiol 51:1314–1320Google Scholar
  5. Ballesteros I, Ballesteros M, Cabañas A, Carrasco J, Martín C, Negro MJ, Saez F, Saez R (1991) Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol. Appl Biochem Biotechnol 28–29:307–315CrossRefGoogle Scholar
  6. Ballesteros M, Oliva JM, Manzanares P, Negro MJ, Ballesteros I (2002) Ethanol production from paper material using a simultaneous saccharification and fermentation system in a fed-batch basis. World J Microbiol Biotechnol 18:559–561CrossRefGoogle Scholar
  7. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848CrossRefGoogle Scholar
  8. Bamforth C (1998) Beer: tap into the art and science of brewing. Plenum, New YorkGoogle Scholar
  9. Banat IM, Marchant R (1995) Characterization and potential industrial applications of 5 novel, thermotolerant, fermentative yeast strains. World J Microbiol Biotechnol 11:304–306CrossRefGoogle Scholar
  10. Banat IM, Nigam P, Marchant R (1992) Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World J Microbiol Biotechnol 8:259–263CrossRefGoogle Scholar
  11. Barron N, Marchant R, McHale L, McHale AP (1995) Studies on the use of a thermotolerant strain of Kluyveromyces marxianus in simultaneous saccharification and ethanol formation from cellulose. Appl Microbiol Biotechnol 43:518–520CrossRefGoogle Scholar
  12. Barron N, Mulholland H, Boyle M, McHale AP (1997) Ethanol production by Kluyveromyces marxianus IMB3 during growth on straw-supplemented whiskey distillery spent wash at 45°C. Bioprocess Eng 17:383–386Google Scholar
  13. Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163CrossRefGoogle Scholar
  14. Bollók M, Réczey K, Zacchi G (2000) Simultaneous saccharification and fermentation of steam-pretreated spruce to ethanol. Appl Biochem Biotechnol 84–86:69–80CrossRefGoogle Scholar
  15. Boyle M, Barron N, McHale AP (1997) Simultaneous saccharification and fermentation of straw to ethanol using the thermotolerant yeast strain Kluyveromyces marxianus imb3. Biotechnol Lett 19:49–51CrossRefGoogle Scholar
  16. Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457CrossRefGoogle Scholar
  17. Cysewski GR, Wilke CR (1977) Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol Bioeng 19:1125–1143CrossRefGoogle Scholar
  18. Cysewski GR, Wilke CR (1978) Process design and economic studies of alternative fermentation methods for the production of ethanol. Biotechnol Bioeng 20:1421–1444CrossRefGoogle Scholar
  19. D’Amore T, Celotto G, Russell I, Stewart GG (1989) Selection and optimization of yeast suitable for ethanol production at 40°C. Enzyme Microb Technol 11:411–416CrossRefGoogle Scholar
  20. Fleming M, Barron N, Marehant R, McHale L, McHale AP (1993) Studies on the growth of a thermotolerant yeast strain, Kluyveromyces marxianus IMB3, on sucrose containing media. Biotechnol Lett 15:1195–1198CrossRefGoogle Scholar
  21. Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569CrossRefGoogle Scholar
  22. Gough S, Flynn O, Hack CJ, Marchant R (1996) Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: simplex optimization of media supplements. Appl Microbiol Biotechnol 46:187–190CrossRefGoogle Scholar
  23. Hacking AJ, Taylor IWF, Hanas CM (1984) Selection of yeast able to produce ethanol from glucose at 40°C. Appl Microbiol Biotechnol 19:361–363CrossRefGoogle Scholar
  24. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556CrossRefGoogle Scholar
  25. Hashimoto H, Aritomi K, Minohara T, Nishizawa Y, Hoshida H, Kashiwagi S, Akada R (2006) Direct mating between diploid sake strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:689–696CrossRefGoogle Scholar
  26. Hong J, Wang Y, Kumagai H, Tamaki H (2007) Construction of thermotolerant yeast expressing thermostable cellulase genes. J Biotechnol 130:114–123CrossRefGoogle Scholar
  27. Lark N, Xia YK, Qin CG, Gong CS, Tsao GT (1997) Production of ethanol from recycled paper sludge using cellulase and yeast, Kluyveromyces marxianus. Biomass Bioenergy 12:135–143CrossRefGoogle Scholar
  28. Limtong S, Srisuk N, Yongmanitchai W, Yurimoto H, Nakase T, Kato N (2005) Pichia thermomethanolica sp. nov., a novel thermotolerant, methylotrophic yeast isolated in Thailand. Int J Syst Evol Microbiol 55:2225–2229CrossRefGoogle Scholar
  29. Limtong S, Stringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugarcane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374CrossRefGoogle Scholar
  30. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRefGoogle Scholar
  31. Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabanas A, Ballesteros M (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105:87–100CrossRefGoogle Scholar
  32. Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3–1042. Appl Environ Microbiol 74:7514–7521CrossRefGoogle Scholar
  33. Rajoka MI, Khan S, Shahid R (2003) Kinetics and regulation studies of the production of β-galactosidase from Kluyveromyces marxianus grown on different substrates. Food Technol Biotechnol 41:315–320Google Scholar
  34. Singh D, Banat IM, Nigam P, Marchant R (1998) Industrial scale ethanol production using the thermotolerant yeast Kluyveromyces marxianus IMB3 in an Indian distillery. Biotechnol Lett 20:753–755CrossRefGoogle Scholar
  35. Spindler DD, Wyman CE, Grohmann K (1989) Evaluation of thermotolerant yeasts in controlled simultaneous saccharifications and fermentations of cellulose to ethanol. Biotechnol Bioeng 34:189–195CrossRefGoogle Scholar
  36. Sree NK, Sridhar M, Suresh K, Banat IM, Rao LV (2000) Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production. Bioresour Technol 72:43–46CrossRefGoogle Scholar
  37. Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2008) Simultaneous saccharification and fermentation of kanlow switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4. Biotechnol Bioeng 101:894–902CrossRefGoogle Scholar
  38. Szczodrak J, Targonski Z (1988) Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose. Biotechnol Bioeng 31:300–303CrossRefGoogle Scholar
  39. Taylor F, Kurantz MJ, Goldberg N, Craig JC Jr (1995) Continuous fermentation and stripping of ethanol. Biotechnol Prog 11:693–698CrossRefGoogle Scholar
  40. Wiegel J (1980) Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia 36:1434–1446CrossRefGoogle Scholar
  41. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19:1109–1117CrossRefGoogle Scholar
  42. Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol. doi: 10.1016/j.jbiotec.2009.05.001 Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Babiker M. A. Abdel-Banat
    • 1
  • Hisashi Hoshida
    • 1
  • Akihiko Ano
    • 2
  • Sanom Nonklang
    • 1
  • Rinji Akada
    • 1
  1. 1.Department of Applied Molecular BioscienceYamaguchi University Graduate School of MedicineUbeJapan
  2. 2.Iwata Chemical Co. Ltd.IwataJapan

Personalised recommendations