Advertisement

Applied Microbiology and Biotechnology

, Volume 85, Issue 4, pp 849–860 | Cite as

Biogas production: current state and perspectives

  • Peter Weiland
Mini-Review

Abstract

Anaerobic digestion of energy crops, residues, and wastes is of increasing interest in order to reduce the greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation and as a vehicle fuel. For biogas production, various process types are applied which can be classified in wet and dry fermentation systems. Most often applied are wet digester systems using vertical stirred tank digester with different stirrer types dependent on the origin of the feedstock. Biogas is mainly utilized in engine-based combined heat and power plants, whereas microgas turbines and fuel cells are expensive alternatives which need further development work for reducing the costs and increasing their reliability. Gas upgrading and utilization as renewable vehicle fuel or injection into the natural gas grid is of increasing interest because the gas can be used in a more efficient way. The digestate from anaerobic fermentation is a valuable fertilizer due to the increased availability of nitrogen and the better short-term fertilization effect. Anaerobic treatment minimizes the survival of pathogens which is important for using the digested residue as fertilizer. This paper reviews the current state and perspectives of biogas production, including the biochemical parameters and feedstocks which influence the efficiency and reliability of the microbial conversion and gas yield.

Keywords

Anaerobic digestion Biogas Biogas upgrading Biomethanation Biomass Co-digestion Digestate Dry fermentation Energy crops Methane potential Wet fermentation 

References

  1. Abdoun E, Weiland P (2009) Optimization of monofermentation from renewable raw materials by the addition of trace elements. Bornimer Agrartechnische Berichte 68:69–78Google Scholar
  2. Ahrens T, Weiland P (2007) Biomethane for future mobility. Landbauforschung Völkenrode 57:71–79Google Scholar
  3. Ahring BK, Sandberg M, Angelidaki I (1995) Volatile fatty acids as indicators of process imbalance in anaerobic digesters. Appl Microbiol Biotechnol 34:559–565CrossRefGoogle Scholar
  4. Amon T, Hackl E, Jeremic D, Amon B, Boxberger J (2001) Biogas production from animal wastes, energy plants and organic wastes. In: van Velsen A, Verstraete W (Eds) Proc. 9th World Congress on Anaerobic Digestion pp 381–386Google Scholar
  5. Amon T, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Boriroza V, Hrbek R, Friedel J, Pötsch E, Wagentristel H, Schreiner M, Zollitsch W (2007) Methane production through anaerobic digestion of various energy crop grown in sustainable crop rotations. Bioresour Technol 98:3204–3212CrossRefGoogle Scholar
  6. Andara AR, Esteban JMB (1999) Kinetic study of the anaerobic digestion of the solid fraction of piggery slurries. Biomass Bioenergy 17:435–443CrossRefGoogle Scholar
  7. Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42:159–166CrossRefGoogle Scholar
  8. Angelidaki I, Ellegard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372CrossRefGoogle Scholar
  9. Angelidaki I Ellegaard L, Ahring B (2003) Application of the anaerobic digestion process. In: Biomethanation II, Adv. Biochem Eng/Biotechnol, Springer, pp 2–33Google Scholar
  10. Bagi Z, Acs N, Balint B, Hovrath L, Dobo K, Perei KR, Rakhely G, Kovacs KL (2007) Biotechnological intensification of biogas production. Appl Microbiol Biotechnol 76:473–482CrossRefGoogle Scholar
  11. Banemann D, Nelles M (2009) Von der Ernte bis in den Fermenter. VDI-Ber 2057:29–46Google Scholar
  12. Baserga U (1998) Landwirtschaftliche Co-Vergärungs-Biogasanlagen, FAT-Berichte No. 512, Tänikon/SwitzerlandGoogle Scholar
  13. Bendixen HJ (1999) Hygienic safty –results of scientific investigations in Denmark Sanitation requirements in Danish BGPs. In: Böhm R, Wellinger A (Eds.), Hygienic and Environmental Aspects of Anaerobic Digestion, Stuttgart pp. 27–47Google Scholar
  14. Bischoff M (2009) Erkenntnisse beim Einsatz von Zusatz- und Hilfsstoffen sowie von Spurenelementen in Biogasanlagen. VDI-Ber 2057:111–123Google Scholar
  15. Biswas L, Chowdhury R, Battacharya P (2007) Mathematical modeling for the prediction of biogas generation characteristics of an anaerobic digester based on food/vegetable residues. Biomass Bioenergy 31:80–86CrossRefGoogle Scholar
  16. Boe K, Bastone DJ, Angelidaki I (2005) Online headspace chromatographic method for measuring VFA in biogas reactor. Water Sci Technol 52:473–478Google Scholar
  17. Brauer A, Weiland P (2009) Kontinuierliche Wasserstoffmessung zur Beurteilung der Prozessstabilität von Fermentationsversuchen. VDI_Berichte 2057:2237–2247Google Scholar
  18. Braun R (1982) Biogas-Methangärung organischer Abfallstoffe, Springer WienGoogle Scholar
  19. Braun R (2007) Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development. In: Ranalli P (ed) Improvement of crop plants for industrial end uses. Springer, Dordrecht pp. 335–415CrossRefGoogle Scholar
  20. Braun R (2009) Biogas from energy crop digestion. IEA Task 37 Brochure, International Energy Agency, Paris, FranceGoogle Scholar
  21. Busch G, Großmann J, Sieber M, Burckhardt M (2009) A new and sound technology for biogas from solid waste and biomass. Water Air Soil Pollut Focus 9:89–97CrossRefGoogle Scholar
  22. De Baere L, Mattheeuws B (2008) State-of-the-art 2008—anaerobic digestion of solid waste. Waste Management World 9:1–8Google Scholar
  23. Döhler H, Eckel H, Frisch J (2006) Energiepflanzen. KTBL, DarmstadtGoogle Scholar
  24. Dornack C (2009) Stickstoff in Biogasanlagen. VDI-Ber 2057:155–171Google Scholar
  25. Driehuis F, Elferink SJ, Spoelstra SF (1999) Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J Appl Microbiol 87:583–594CrossRefGoogle Scholar
  26. EC No. 1774 (2002) Health rules concerning animal-by-products not intended for human consumptionGoogle Scholar
  27. Elferink SJWH, van Lis R, Heilig HGHJ, Akkermans ADL, Stams AJM (1998) Detection and quantification of microorganisms in anaerobic bioreactors. Biodegradation 9:169–177CrossRefGoogle Scholar
  28. EurObserv’er Report (2008) The state of renewable energies in Europe pp 47–51Google Scholar
  29. Fachverband Biogas (2009) Biogas dezentral erzeugen, regional profitieren, international gewinnen. In. Proc. 18. Jahrestagung des Fachverbandes Biogas, HannoverGoogle Scholar
  30. FNR (2008) Biogas Basisdaten Deutschland. Fachagentur Nachwachsende Rohstoffe, GülzowGoogle Scholar
  31. Fehrenbach H, Giegrich J, Reinhardt G, Sayer U, Gretz M, Lanje K, Schmitz J (2008) Kriterien einer nachhaltigen Bioenergienutzung im globalen Maßstab. UBA-Forschungsbericht 206:41–112Google Scholar
  32. Friedmann H, Kube J (2008) Optimierung der Biogasproduktion aus nachwachsenden Rohstoffen durch den Einsatz von Mikronährstoffen–ein Erfahrungsbericht. In: Tagungsband 17. Jahrestagung des Fachverbandes Biogas, Nürnberg, pp 125–130Google Scholar
  33. Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and modeling of anaerobic digestion processes. In: Biomethanation I, Scheper T, Ahring BK (eds.), Springer, BerlinGoogle Scholar
  34. Gemmeke B, Rieger C, Weiland P (2009) Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich. FNR, GülzowGoogle Scholar
  35. Gerardi M H (2003) The microbiology of anaerobic digesters. WileyGoogle Scholar
  36. Gerhardt M (2007) The use of hydrolytic enzymes in agricultural biogas production. In: Progress in Biogas, Stuttgart-Hohenheim, pp 247–254Google Scholar
  37. Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167Google Scholar
  38. Heiermann M, Linke B, Look R, Kessler UI (2007) Biogas from renewable resources through dry anaerobic digestion. Landtechnik 62:14–15Google Scholar
  39. IEA (2006) World Energy Outlook. International Energy Agency, ParisGoogle Scholar
  40. IPCC (2000) Special report on emission scenarios, Intergovernmental Panel on Climate ChangeGoogle Scholar
  41. Jarvis A, Nordberg A, Jarlsvik T, Mathisen B, Svensson BH (1997) Improvement of a grass-clover silage-fed biogas process by the addition of cobalt. Biomass Bioenergy 12:453–460CrossRefGoogle Scholar
  42. Kaiser F (2004) Untersuchung der Wirkung von MethaPlus auf die Vergärung von Maissilage im Laborfermenter. Bayerische Landesanstalt für Landwirtschaft (LfL)Google Scholar
  43. Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage. Renew Energy 30:1195–1202CrossRefGoogle Scholar
  44. Karakashev D, Bastone D, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71:331–338CrossRefGoogle Scholar
  45. Karpenstein-Machan (2005) Energiepflanzenbau für Biogasanlagenbetreiber. DLG-Verlag, FrankfurtGoogle Scholar
  46. Kim J, Park C, KimTH LM, Kim S, Lee SW (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275Google Scholar
  47. Klocke M, Nettmann E, Bergmann I, Mundt K, Souidiu K, Mumme J, Linke B (2008) Characterization of the methanogenic Archea within two-phase biogas reactor systems operated with plant biomass. Syst Appl Microbiol 31:190–205CrossRefGoogle Scholar
  48. Klocke M, Nettmann E, Bergmann I (2009) Monitoring der methanbildenden Mikroflora in Praxis-Biogasanlagen im ländlichen Raum: Analyse des Ist-Zustandes und Entwicklung eines quantitativen Nachweissystems. Bornimer Agrartechnische Berichte No. 67Google Scholar
  49. Kroiss H (1985) Anaerobe Abwasserreinigung. Wiener Mitteilungen 62:65–68Google Scholar
  50. KTBL/FNR (2007) Faustzahlen Biogas. Kuratorium für Technik und Bauwesen in der Landwirtschaft, Darmstadt, pp 49–51Google Scholar
  51. Kusch S, Oechsner H, Jungbluth T (2005) Vergärung landwirtschaftlicher Substrate in diskontinuierlichen Feststofffermentern. Agrartechnische Forschung 11:81-91LfU/2007) Biogashandbuch Bayern–Materialband. Bayerisches Landesamt für Umwelt, AugsburgGoogle Scholar
  52. Lehmann T (2008) Biogasanlagenbau–auf den Aufschluss kommt es an. Biogas 2008, Proc. Innovations Kongress, Osnabrück, pp 14–23Google Scholar
  53. Lethomäki A (2006) Biogas production from energy crops and crop residues. Jyväsk Stud Biol Environ Sci 163:1–91Google Scholar
  54. Leven L, Eriksson ARB, Schnürer A (2007) Effect of process temperature on bacterial and archael communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693CrossRefGoogle Scholar
  55. Linke B (2006) Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenergy 30:892–896CrossRefGoogle Scholar
  56. Lossie U, Pütz P (2008) Targeted control of biogas plants with the help of FOS/TAC. Practice Report Hach-LangeGoogle Scholar
  57. Mähnert P (2007) Kinetik der Biogasproduktion aus nachwachsenden Rohstoffen und Gülle. Dissertation Humboldt-Universität Berlin, 202 pGoogle Scholar
  58. Miltner M, Makaruk A, Bala H, Harasek M (2009) Biogas upgrading for transportation purposes—operational experiences with Austria's first bio-CNG fuelling station. Chem Eng Trans 18:617–622Google Scholar
  59. Mladenovska Z, Hartmann H, Kvist T, Sales-Cruz M, Gani R, Ahring BK (2006) Thermal pretreatment of the solid fraction of manure: impact of the biogas reactor performance and microbial community. Water Sci Technol 53:59–67Google Scholar
  60. Morgavi DP, Beauchemin KA, Nsereko LM (2001) Resistance of feed enzymes to proteolytic inactivation by rumen microorganisms and gastrointestinal proteases. J Anim Sci 79:1621–1630Google Scholar
  61. Mösche M, Jördening HJ (1999) Comparison of different models of substrate and product inhibition in anaerobic digestion. Water Res 33:2545–2554CrossRefGoogle Scholar
  62. Mshandete A, Bjornsson L, Kivaisi AK, Rubindamayugi MST, Matthiasson B (2006) Effect of particle size on biogas yield from sisal fibre waste. Renew energy 31:2385–2392CrossRefGoogle Scholar
  63. Müller J et al (2003) Thermische, chemische und biochemische Desintegrationsverfahren. Korresp Abwasser 50:796–804Google Scholar
  64. Nickel K (2008) Mehr Biogas durch Ultraschallbehandlung—erster Bericht aus der Praxis. Biogas 2008, Proc. Innovations Kongress, Osnabrück, 96–102Google Scholar
  65. Nielsen HB, Agelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99:7995–8001CrossRefGoogle Scholar
  66. Nielsen HB, Uellendahl H, Ahring BK (2007) Regulation and optimization of the biogas process: propionate as a key factor. Biomass Bioenergy 31:820–830CrossRefGoogle Scholar
  67. Oechsner H, Lemmer A (2009) Was kann die Hydrolyse bei der Biogasvergärung leisten? VDI-Ber 2057:37–46Google Scholar
  68. Parawira W, Read JS, Mattiasson B, Björnsson L (2008) Energy production from agricultural residues: high methane yields in a pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32:44–50CrossRefGoogle Scholar
  69. Persson M, Jönsson O, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid injection. Brochure of IEA Task 37 “Energy from Biogas and Landfill Gas”Google Scholar
  70. Petersson A (2008) New biogas upgrading processes. Brochure of IEA Task 37 “Energy from Biogas and Landfill Gas”Google Scholar
  71. Polster A, Brummack J (2009) Entschwefelung von Biogasanlagen. VDI-Berichte 2057:185–193Google Scholar
  72. Prechtel S, Anzer T, Schneider R, Faulstich M (2004) Biogas production from substrates with high amounts of organic nitrogen. In: Proc. 10th World Congress—Anaerobic Digestion 2004, Montreal, pp 1809–1812Google Scholar
  73. Preißler D, Lemmer A, Oechsner H, Jungbluth T (2009) Die Bedeutung der Spurenelemente bei der Ertragssteigerung und Prozessstabilisierung. In: Proc. 18. Jahrestagung des Fachverbandes Biogas, Hannover, pp 123–126Google Scholar
  74. Rieger C, Weiland P (2006) Prozessstörungern frühzeitig erkennen. Biogas J 4:18–20Google Scholar
  75. Romano RT, Zhang R, Teter S, McGarry JA (2009) The effect of enzyme addition on anaerobic digestion of Jose Tall Wheat Grass. Bioresour Technol 100:4564–4571CrossRefGoogle Scholar
  76. Sahlström L (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour Technol 87:161–166CrossRefGoogle Scholar
  77. Schimpf U, Valbuena R (2009) Increase in efficiency of biomethanation by enzyme application. Bornimer Agrartechnische Berichte 68:44–56Google Scholar
  78. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280Google Scholar
  79. Schmid J, Krautkremer B, Müller J (2005) Biogas-powered micro-gas-turbine. Proc. Expo World Conference on Wind Energy, Renewable Energy and Fuel Cells, Hamamatsu/Japan, 7.-10.6.2005Google Scholar
  80. Schneider R, Quicker P, Anzer T, Prechtl S, Faulstich M (2002) Grundlegende Untersuchungen zur effektiven, kostengünstigen Entfernung von Schwefelwasserstoff aus Biogas. In: Biogasanlagen Anforderungen zur Luftreinhaltung, Bayerisches Landesamt für Umweltschutz, AugsburgGoogle Scholar
  81. Schön M (1994) Verfahren zur Vergärung organischer Rückstände in der Abfallwirtschaft. Erich Schmidt Verlag, BerlinGoogle Scholar
  82. Schulte-Schulze Berndt A (2005) Biogas upgrading with pressure swing adsorption versus biogas reforming. In: Lens P, Westermann P, Haberbauer M, Moreno A (eds) Biofuels for fuel cells. IWA Publishing, pp 414–429Google Scholar
  83. Schulz H, Eder B (2001) Biogas-Praxis. Grundlagen–Planung–Anlagenbau. Ökobuchverlag, Staufen bei FreiburgGoogle Scholar
  84. Stabnikova O, Liu XY, Wang JY, Ivanov V (2006) Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl Nicrobiol Biotechnol 73:696–702CrossRefGoogle Scholar
  85. Strauch D, Philipp W (2000) Hygieneaspekte der biologischen Abfallbehandlung und –verwertung. In: Bidlingmaier W (ed) Biologische Abfallbehandlung. Eugen Ulmer, Stuttgart, pp 155–208Google Scholar
  86. Vieitez ER, Gosh S (1999) Biogasification of solid wastes by two-phase anaerobic fermentation. Biomass Bioenergy 16:299–309CrossRefGoogle Scholar
  87. Wang QH, Kuninobu M, Ogawa H, Kato Y (1999) Degradation of volatile fatty in highly efficient anaerobic digestion. Biomass Bioenergy 16:407–416CrossRefGoogle Scholar
  88. Weiland P (2006) Stand der Technik bei der Trockenfermentation. Gülzower Fachgespräche 24:22–38Google Scholar
  89. Weiland P (2008a) Trockenfermentation in der Landwirtschaft-Welche Substrate und Techniken finden Anwendung. In: Bilitewski B, Werner P, Dornack C, StegmannR, Rettenberger G, Faulstich M, Wittmaier M (eds) Anaerobe biologische Abfallbehandlung, Dresden, pp 235–245Google Scholar
  90. Weiland P (2008b) Wichtige Messdaten für den Prozessablauf und Stand der Technik in der Praxis. Gülzower Fachgespräche 27:17–31Google Scholar
  91. Weiland P, Verstraete W, van Haandel A (2009) Biomass digestion to methane in agriculture: A successful pathway for the energy production and waste treatment worldwide. In: Soetaert W, Vandamme E J (eds) Biofuels, Wiley, pp 171–195Google Scholar
  92. Weinberg ZG, Muck RE, Weimer PJ (2003) The survival of silage inocculent lactic acid bacteria in rumen fluid. J Appl Biochem 93:1066–1071Google Scholar
  93. Wempe J, Dumont M (2008) Lets give full Gas! New Gas Platform, Green Gas Working Group, NetherlandGoogle Scholar
  94. Wünsche K (2008) Praxiserfahrungen drucklose Aminwäsche. Proc. Biogas upgrading to biomethane, 6th Hanauer Dialog, pp 136–145Google Scholar
  95. Yu Y, Lee C, Kim J, Hwangs S (2005) Group specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679CrossRefGoogle Scholar
  96. Zubr J (1986) Methanogenic fermentation of fresh and ensiled plant materials. Biomass 11:159–171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Johann Heinrich von Thünen-InstituteBraunschweigGermany

Personalised recommendations