Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae

  • Junmei Ding
  • Xiaowei Huang
  • Lemin Zhang
  • Na Zhao
  • Dongmei Yang
  • Keqin Zhang
Mini-Review

Abstract

Eukaryotic cells have developed diverse strategies to combat the harmful effects of a variety of stress conditions. In the model yeast Saccharomyces cerevisiae, the increased concentration of ethanol, as the primary fermentation product, will influence the membrane fluidity and be toxic to membrane proteins, leading to cell growth inhibition and even death. Though little is known about the complex signal network responsible for alcohol stress responses in yeast cells, several mechanisms have been reported to be associated with this process, including changes in gene expression, in membrane composition, and increases in chaperone proteins that help stabilize other denatured proteins. Here, we review the recent progresses in our understanding of ethanol resistance and stress responses in yeast.

Keywords

Ethanol tolerance Stress response Membrane composition Stabilization of proteins Regulation of gene expression 

Notes

Acknowledgements

The research described here is supported by the National Basic Research Program of China (program 973, grant number 2007CB411600) and the Department of Science and Technology of Yunnan Province, China (grant number 2006PY01-27).

References

  1. Alexandre H, Plourde L, Charpentier C, Francois J (1998) Lack of correlation between trehalose accumulation, cell viability, and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae. Microbiology 144(Pt 4):1103–1111CrossRefGoogle Scholar
  2. Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103CrossRefGoogle Scholar
  3. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568CrossRefGoogle Scholar
  4. Aravind L, Iyer LM, Koonin EV (2003) Scores of RINGS but no PHDs in ubiquitin signaling. Cell Cycle 2:123–126Google Scholar
  5. Bagnat M, Keranen S, Shevchenko A, Simons K (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci U S A 97:3254–3259CrossRefGoogle Scholar
  6. Barry JA, Gawrisch K (1995) Effects of ethanol on lipid bilayers containing cholesterol, gangliosides, and sphingomyelin. Biochemistry 34:8852–8860CrossRefGoogle Scholar
  7. Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M et al (1992) Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959CrossRefGoogle Scholar
  8. Betz C, Schlenstedt G, Bailer SM (2004) Asr1p, a novel yeast ring/PHD finger protein, signals alcohol stress to the nucleus. J Biol Chem 279:28174–28181CrossRefGoogle Scholar
  9. Bienz M (2006) The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 31:35–40CrossRefGoogle Scholar
  10. Capili AD, Schultz DC, Rauscher IF, Borden KL (2001) Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING, and LIM zinc-binding domains. EMBO J 20:165–177CrossRefGoogle Scholar
  11. Cartwright CP, Veazey FJ, Rose AH (1987) Effect of ethanol on activity of the plasma membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae. J Gen Microbiol 133:857–865Google Scholar
  12. Craig EA, Gambill BD, Nelson RJ (1993) Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57:402–414Google Scholar
  13. Daulny A, Geng F, Muratani M, Geisinger JM, Salghetti SE, Tansey WP (2008) Modulation of RNA polymerase II subunit composition by ubiquitylation. Proc Natl Acad Sci U S A 105:19649–19654CrossRefGoogle Scholar
  14. Daum G, Lees ND, Bard M, Dickson R (1998) Biochemistry, cell biology, and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510CrossRefGoogle Scholar
  15. De Virgilio C, Burckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323CrossRefGoogle Scholar
  16. Estruch F (2000) Stress-controlled transcription factors, stress-induced genes, and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486CrossRefGoogle Scholar
  17. Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRefGoogle Scholar
  18. Fernandes AR, Sa-Correia I (2003) Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase. Yeast 20:207–219CrossRefGoogle Scholar
  19. Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H (2006) The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS Yeast Res 6:744–750CrossRefGoogle Scholar
  20. Furukawa K, Kitano H, Mizoguchi H, Hara S (2004) Effect of cellular inositol content on ethanol tolerance of Saccharomyces cerevisiae in sake brewing. J Biosci Bioeng 98:107–113Google Scholar
  21. Galeote VA, Alexandre H, Bach B, Delobel P, Dequin S, Blondin B (2007) Sfl1p acts as an activator of the HSP30 gene in Saccharomyces cerevisiae. Curr Genet 52:55–63CrossRefGoogle Scholar
  22. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442CrossRefGoogle Scholar
  23. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257Google Scholar
  24. Gomes FC, Pataro C, Guerra JB, Neves MJ, Correa SR et al (2002) Physiological diversity and trehalose accumulation in Schizosaccharomyces pombe strains isolated from spontaneous fermentations during the production of the artisanal Brazilian cachaca. Can J Microbiol 48:399–406CrossRefGoogle Scholar
  25. Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G et al (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597CrossRefGoogle Scholar
  26. Gorner W, Durchschlag E, Wolf J, Brown EL, Ammerer G et al (2002) Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J 21:135–144CrossRefGoogle Scholar
  27. Guo L, Chen S, Liu K, Liu Y, Ni L et al (2008) Isolation of heat shock factor HsfA1a-binding sites in vivo revealed variations of heat shock elements in Arabidopsis thaliana. Plant Cell Physiol 49:1306–1315CrossRefGoogle Scholar
  28. Gustin MC, Albertyn J, Alexander M, Davenport K (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62:1264–1300Google Scholar
  29. Hahn GM, Shiu EC, Auger EA (1991) Mammalian stress proteins HSP70 and HSP28 coinduced by nicotine and either ethanol or heat. Mol Cell Biol 11:6034–6040Google Scholar
  30. Hahn JS, Hu Z, Thiele DJ, Iyer VR (2004) Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24:5249–5256CrossRefGoogle Scholar
  31. Hashikawa N, Sakurai H (2004) Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Mol Cell Biol 24:3648–3659CrossRefGoogle Scholar
  32. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210CrossRefGoogle Scholar
  33. Hirata Y, Andoh T, Asahara T, Kikuchi A (2003) Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes. Mol Biol Cell 14:302–312CrossRefGoogle Scholar
  34. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372CrossRefGoogle Scholar
  35. Hu CK, Bai FW, An LJ (2005) Protein amino acid composition of plasma membranes affects membrane fluidity and thereby ethanol tolerance in a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae. Sheng Wu Gong Cheng Xue Bao 21:809–813Google Scholar
  36. Huisinga KL, Pugh BF (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13:573–585CrossRefGoogle Scholar
  37. Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9:305–319CrossRefGoogle Scholar
  38. Inoue Y, Tsujimoto Y, Kimura A (1998) Expression of the glyoxalase I gene of Saccharomyces cerevisiae is regulated by high osmolarity glycerol mitogen-activated protein kinase pathway in osmotic stress response. J Biol Chem 273:2977–2983CrossRefGoogle Scholar
  39. Inoue T, Iefuji H, Fujii T, Soga H, Satoh K (2000) Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci Biotechnol Biochem 64:229–236CrossRefGoogle Scholar
  40. Izawa S, Ikeda K, Kita T, Inoue Y (2006) Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation. Appl Microbiol Biotechnol 72:560–565CrossRefGoogle Scholar
  41. Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134CrossRefGoogle Scholar
  42. Jakobsen BK, Pelham HR (1988) Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol 8:5040–5042Google Scholar
  43. James TC, Campbell S, Donnelly D, Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432–448CrossRefGoogle Scholar
  44. Kelley MJ, Bailis AM, Henry SA, Carman GM (1988) Regulation of phospholipid biosynthesis in Saccharomyces cerevisiae by inositol. Inositol is an inhibitor of phosphatidylserine synthase activity. J Biol Chem 263:18078–18085Google Scholar
  45. Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105:2899–2904CrossRefGoogle Scholar
  46. Klein-Marcuschamer D, Stephanopoulos G (2008) Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci U S A 105:2319–2324CrossRefGoogle Scholar
  47. Kobayashi N, McEntee K (1993) Identification of cis and trans components of a novel heat shock stress regulatory pathway in Saccharomyces cerevisiae. Mol Cell Biol 13:248–256Google Scholar
  48. Kubota S, Takeo I, Kume K, Kanai M, Shitamukai A et al (2004) Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci Biotechnol Biochem 68:968–972CrossRefGoogle Scholar
  49. Leao C, Van Uden N (1984) Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 774:43–48CrossRefGoogle Scholar
  50. Lee S, Carlson T, Christian N, Lea K, Kedzie J et al (2000) The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol Biol Cell 11:1753–1764Google Scholar
  51. Li N, Zhang LM, Zhang KQ, Deng JS, Prandl R, Schoffl F (2006) Effects of heat stress on yeast heat shock factor-promoter binding in vivo. Acta Biochim Biophys Sin (Shanghai) 38:356–362CrossRefGoogle Scholar
  52. Liu KH, Zhang LM, Ding XW, Deng BW, Chen WQ (2008) Analysis of in vivo binding of yeast heat shock factor to promoter DNA. AJB 7:1069–1071Google Scholar
  53. Lucero P, Penalver E, Moreno E, Lagunas R (1997) Moderate concentrations of ethanol inhibit endocytosis of the yeast maltose transporter. Appl Environ Microbiol 63:3831–3836Google Scholar
  54. MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604CrossRefGoogle Scholar
  55. Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003Google Scholar
  56. Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235Google Scholar
  57. Morita Y, Nakamori S, Takagi H (2003) L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase. Appl Environ Microbiol 69:212–219CrossRefGoogle Scholar
  58. Moskvina E, Schuller C, Maurer CT, Mager WH, Ruis H (1998) A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14:1041–1050CrossRefGoogle Scholar
  59. Neves MJ, Francois J (1992) On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem J 288(Pt 3):859–864Google Scholar
  60. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412CrossRefGoogle Scholar
  61. Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S et al (2004) Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell 3:1111–1123CrossRefGoogle Scholar
  62. Ogawa Y, Nitta A, Uchiyama H, Imamura T, Shimoi H, Ito K (2000) Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J Biosci Bioeng 90:313–320Google Scholar
  63. Piper PW (1995) The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127CrossRefGoogle Scholar
  64. Piper PW, Talreja K, Panaretou B, Moradas-Ferreira P, Byrne K et al (1994) Induction of major heat shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140(Pt 11):3031–3038CrossRefGoogle Scholar
  65. Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 2:12–24CrossRefGoogle Scholar
  66. Pirkkala L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15:1118–1131CrossRefGoogle Scholar
  67. Quan X, Rassadi R, Rabie B, Matusiewicz N, Stochaj U (2004) Regulated nuclear accumulation of the yeast hsp70 Ssa4p in ethanol-stressed cells is mediated by the N-terminal domain, requires the nuclear carrier Nmd5p and protein kinase C. FASEB J 18:899–901Google Scholar
  68. Samuel D, Kumar TK, Ganesh G, Jayaraman G, Yang PW et al (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352Google Scholar
  69. Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J 11:2357–2364Google Scholar
  70. Schmelzle T, Beck T, Martin DE, Hall MN (2004) Activation of the RAS/cyclic AMP pathway suppresses a TOR deficiency in yeast. Mol Cell Biol 24:338–351CrossRefGoogle Scholar
  71. Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389Google Scholar
  72. Seymour IJ, Piper PW (1999) Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Microbiology 145(Pt 1):231–239CrossRefGoogle Scholar
  73. Shobayashi M, Mitsueda S, Ago M, Fujii T, Iwashita K, Iefuji H (2005) Effects of culture conditions on ergosterol biosynthesis by Saccharomyces cerevisiae. Biosci Biotechnol Biochem 69:2381–2388CrossRefGoogle Scholar
  74. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648CrossRefGoogle Scholar
  75. Sorger PK, Pelham HR (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54:855–864CrossRefGoogle Scholar
  76. Swan TM, Watson K (1998) Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiol Lett 169:191–197CrossRefGoogle Scholar
  77. Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8656–8662CrossRefGoogle Scholar
  78. Takemori Y, Sakaguchi A, Matsuda S, Mizukami Y, Sakurai H (2006) Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 275:89–96CrossRefGoogle Scholar
  79. Tanaka M, Machida Y, Nukina N (2005) A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J Mol Med 83:343–352CrossRefGoogle Scholar
  80. Terao Y, Nakamori S, Takagi H (2003) Gene dosage effect of L-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 69:6527–6532CrossRefGoogle Scholar
  81. van Voorst F, Houghton-Larsen J, Jonson L, Kielland-Brandt MC, Brandt A (2006) Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359CrossRefGoogle Scholar
  82. Vianna CR, Silva CL, Neves MJ, Rosa CA (2008) Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaca: trehalose metabolism, heat and ethanol resistance. Antonie Van Leeuwenhoek 93:205–217CrossRefGoogle Scholar
  83. Watanabe M, Tamura K, Magbanua JP, Takano K, Kitamoto K et al (2007) Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol tolerance sake yeast Kyokai no. 11. J Biosci Bioeng 104:163–170CrossRefGoogle Scholar
  84. Watson K, Cavicchioli R (1983) Acquisition of ethanol tolerance in yeast cells by heat shock. Biotechnology Letters 5:683–688CrossRefGoogle Scholar
  85. Weber FJ, de Bont JA (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245Google Scholar
  86. Wiederrecht G, Seto D, Parker CS (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54:841–853CrossRefGoogle Scholar
  87. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469CrossRefGoogle Scholar
  88. Xiao D, Wu S, Zhu X, Chen Y, Guo X (2008) Effects of Soya Fatty Acids on Cassava Ethanol Fermentation. Appl Biochem Biotechnol doi:10.1007/s12010-008-8344-7
  89. Yamamoto A, Mizukami Y, Sakurai H (2005) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280:11911–11919CrossRefGoogle Scholar
  90. You KM, Rosenfield CL, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Junmei Ding
    • 1
  • Xiaowei Huang
    • 1
  • Lemin Zhang
    • 1
  • Na Zhao
    • 1
  • Dongmei Yang
    • 1
  • Keqin Zhang
    • 1
  1. 1.Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of EducationYunnan UniversityKunmingChina

Personalised recommendations