Advertisement

Applied Microbiology and Biotechnology

, Volume 85, Issue 6, pp 1751–1758 | Cite as

Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene

  • Xiao-Jun Ji
  • He Huang
  • Jian-Guo Zhu
  • Lu-Jing Ren
  • Zhi-Kui Nie
  • Jun Du
  • Shuang Li
Biotechnological Products and Process Engineering

Abstract

Ethanol was a major byproduct of 2,3-butanediol (2,3-BD) fermentation by Klebsiella oxytoca ME-UD-3. In order to achieve a high efficiency of 2,3-BD production, K. oxytoca mutants deficient in ethanol formation were successfully constructed by replace the aldA gene coding for aldehyde dehydrogenase with a tetracycline resistance cassette. The results suggested that inactivation of aldA led to a significantly improved 2,3-BD production. The carbon flux to 2,3-BD was enhanced by eliminating the byproducing ethanol and at the same time reducing the accumulation of another byproduct acetoin. At last, by fed-batch culturing of the mutant, the final 2,3-BD titer up to 130 g/l with the productivity of 1.63 g/l.h and the 2,3-BD yield relative to glucose of 0.48 g/g was obtained.

Keywords

2,3-butanediol Klebsiella oxytoca Aldehyde dehydrogenase Ethanol Acetoin 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20606018), the Key Program of National Natural Science Foundation of China (Grant No. 20936002), the National Basic Research Program of China (Grant No. 2007CB707805), and the National High Technology Research and Development Program of China (Grant No. 2006AA02Z244). X.-J. Ji was supported by the Innovation Fund for Doctoral Dissertation of Nanjing University of Technology (Grant No. BSCX200808).

References

  1. Afschar AS, Bellgardt KH, Vaz Rossell CE, Czok A, Schaller K (1991) The production of 2, 3-butanediol by fermentation of high test molasses. Appl Microbiol Biotechnol 34:582–585CrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Ana Biochem 72:248–254CrossRefGoogle Scholar
  3. Celińska E, Grajek W (2009) Biotechnological production of 2, 3-butanediol – current state and prospects. Biotechnol Adv. doi: 10.1016/j.biotechadv.2009.05.002 Google Scholar
  4. Cheng KK, Liu HJ, Liu DH (2005) Multiple growth inhibition of Klebsiella pneumoniae in 1, 3-propanediol fermentation. Biotechnol Lett 27:19–22CrossRefGoogle Scholar
  5. Converti A, Perego P, Del Borghi M (2003) Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics: carbon and reduction degree balances in batch cultivations. Biotechnol Bioeng 82:370–377CrossRefGoogle Scholar
  6. Fournet-Fayard S, Joly B, Forestier C (1995) Transformation of wild type Klebsiella pneumoniae with plasmid DNA by electroporation. J Microbiol Methods 24:49–54CrossRefGoogle Scholar
  7. Garg SK, Jain A (1995) Fermentative production of 2, 3-butanediol: a review. Bioresour Technol 51:103–109CrossRefGoogle Scholar
  8. Huang H, Ji XJ, Li S, Du J, Lian M, Gao Z, Hu N (2007) A high 2,3-butanediol producing Klebsiella oxytoca and its application. Chinese Patent (in Chinese). 200710021641.5Google Scholar
  9. Jeong KJ, Lee HS, Lee SY, Chang YK (1998) Efficient transformation of Klebsiella oxytoca by electroporation. Biotechnol Bioprocess Eng 3:48–49CrossRefGoogle Scholar
  10. Ji XJ, Huang H, Li S, Du J, Lian M (2008) Enhanced 2, 3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol Lett 30:731–734CrossRefGoogle Scholar
  11. Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Hu N, Li S (2009) Enhanced 2, 3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour Technol 100:3410–3414CrossRefGoogle Scholar
  12. Johansen L, Bryn K, Stormer FC (1975) Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. J Bacteriol 123:1124–1130Google Scholar
  13. Joseph S, David WR (2001) Molecular cloning: a laboratory manual (Third edition). Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  14. Kosaric N, Magee RJ, Blaszczyk R (1992) Redox potential measurement for monitoring glucose and xylose conversion by K. pneumoniae. Chem Biochem Eng Q 6:145–152Google Scholar
  15. Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P (2009) Enhanced 2, 3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82:49–57CrossRefGoogle Scholar
  16. Ma LC, Lee SL, Lee CZ, Yin SJ, Wang JT (2005) Molecular cloning and kinetic characterization of an aldehyde dehydrogenase gene in Klebsiella pneumoniae. J Formos Med Assoc 104:221–230Google Scholar
  17. Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M (1989) Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. J Bacteriol 171:722–730Google Scholar
  18. Qureshi N, Cheryan M (1989) Production of 2, 3-butanediol by Klebsiella oxytoca. Appl Microbiol Biotechnol 30:440–443CrossRefGoogle Scholar
  19. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–498CrossRefGoogle Scholar
  20. Syu MJ (2001) Biological production of 2, 3-butanediol. Appl Microbiol Biotechnol 55:10–18CrossRefGoogle Scholar
  21. Tran AV, Chambers RP (1987) The dehydration of fermentative 2, 3-butanediol into methyl ethyl ketone. Biotechnol Bioeng 29:343–351CrossRefGoogle Scholar
  22. van Haveren J, Scott EL, Sanders J (2007) Bulk chemicals from biomass. Biofuels, Bioprod Bioref 2:41–57CrossRefGoogle Scholar
  23. Wu KJ, Saratale GD, Lo YC, Chen WM, Tseng ZJ, Chang MC, Tsai BC, Su A, Chang JS (2008) Simultaneous production of 2, 3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge. Bioresour Technol 99:7966–7970CrossRefGoogle Scholar
  24. Xu YZ, Guo NN, Zheng ZM, Ou XJ, Liu HJ, Liu DH (2009) Metabolism in 1, 3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae. Biotechnol Bioeng. doi: 10.1002/bit.22455 Google Scholar
  25. Yang G, Tian JS, Li JL (2007) Fermentation of 1, 3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024CrossRefGoogle Scholar
  26. Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1, 3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259Google Scholar
  27. Zeng AP, Ross A, Biebl H, Tag C, Günzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911CrossRefGoogle Scholar
  28. Zhang Y, Li Y, Du C, Liu M, Cao Z (2006) Inactivation of aldehyde dehydrogenase: A key factor for engineering 1, 3-propanediol production by Klebsiella pneumoniae. Metab Eng 8:578–586CrossRefGoogle Scholar
  29. Zhu JB, Long MN, Xu FC, Wu XB, Xu HJ (2007) Enhanced hydrogen production by insertional inactivation of adhE gene in Klebsiella oxytoca HP1. Chinese Sci Bull 52:492–496CrossRefGoogle Scholar
  30. Zhu JG, Li S, Ji XJ, Huang H, Hu N (2009) Enhanced 1, 3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1, 3-propanediol oxidoreductase isoenzyme. World J Microbiol Biotechnol 25:1217–1223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Xiao-Jun Ji
    • 1
  • He Huang
    • 1
  • Jian-Guo Zhu
    • 1
  • Lu-Jing Ren
    • 1
  • Zhi-Kui Nie
    • 1
  • Jun Du
    • 1
  • Shuang Li
    • 1
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations