Applied Microbiology and Biotechnology

, Volume 85, Issue 1, pp 197–206 | Cite as

The concentration of polysaccharides and proteins in EPS of Pseudomonas putida and Aureobasidum pullulans as revealed by 13C CPMAS NMR spectroscopy

  • Ulrich Metzger
  • Ulrich Lankes
  • Kai Fischpera
  • Fritz H. Frimmel


Extracellular polymeric substances were extracted from the bacterial strain Pseudomonas putida and the fungal species Aureobasidium pullulans using three different methods (formaldehyde–NaOH, ethylenediaminetetraacetic acid (EDTA) and cation-exchange-resin). The composition of the extracellular polymeric substances (EPS) was analysed by biochemical and high-resolution solid state 13C nuclear magnetic resonance (NMR) spectroscopic methods. The EPS yield was strongly dependent on the extraction method, with the formaldehyde–NaOH method showing the best extraction efficiency. The NMR method revealed that when using the EDTA extraction method, about 40% of the EDTA accumulated in the EPS and that was responsible for the apparent high extraction yields. EPS protein content determined by the NMR method was up to 30% higher than the protein content determined using the biochemical (Lowry) method for P. putida and for A. pullulans. The average protein carbon content determined by the NMR method was approximately 70% of the total carbon content. NMR results could be supported by elemental analysis, which showed a high nitrogen content (~10%) in the EPS. The carbohydrate carbon content detected with both methods in the cell aggregates and the EPS was approximately 20% in each. In this study, quantitative 13C cross-polarisation magic angle spinning NMR spectroscopy was conducted on unlabeled cell strains, and EPS and could be used to quantify protein and carbohydrate of different samples.


EPS 13C CPMAS NMR Extraction Protein Carbohydrate 


  1. Aguilera A, Souza-Egipsy V, Martin-Uriz PS, Amils R (2008) Extraction of extracelluar polymeric substances from extreme acidic microbial biofilms. Appl Microbiol Biotechnol 78:1079–1088CrossRefGoogle Scholar
  2. Baldock JA, Oades JM, Vassallo AM, Wilson MA (1990) Solid sate CP/MAS 13C NMR analysis of bacterial and fungal cultures isolated from a soil incubated with glucose. Aust J Soil Res 28:213–225CrossRefGoogle Scholar
  3. Beuling EE, van Dusschoten D, Lens P, van den Heuvel JC, van As H, Ottengraf SPP (1998) Characterisation of diffusive properties of biofilms using pulsed field gradient-nuclear magnetic resonance. Biotech Bioeng 60:283–291CrossRefGoogle Scholar
  4. Brown MJ, Lester JN (1980) Comparison of bacterial extracellular polymer extraction methods. Appl Environ Microbiol 40:179–185Google Scholar
  5. Comte S, Guibaud G, Baudu M (2006) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb Technol 38:237–245CrossRefGoogle Scholar
  6. Dubois M, Gilles KA, Hamilton JR, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  7. Frølund B, Palmgren R, Kleiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchanger resin. Water Res 30:1749–1758CrossRefGoogle Scholar
  8. Garnier C, Görner T, Lartiges BS, Abdelouhab S, de Donato P (2005) Charactersiation of activated sludge exopolymers from various origins: a combined size-exclusion chromatography and infrared microscopy study. Water Res 39:3044–3054CrossRefGoogle Scholar
  9. Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59:629–638CrossRefGoogle Scholar
  10. Hirayama K, Akashi S, Furuya M, Fukuhara KI (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and FRIT-FAB LC/MS. Biochem Biophys Res Commun 173:639–646CrossRefGoogle Scholar
  11. Jernejc K, Cimerman A, Perdih A (1986) Comparison of different methods for protein determination in Aspergillus niger mycelium. Appl Microbiol Biotechnol 23:445–448CrossRefGoogle Scholar
  12. Kachlany SC, Levery SB, Kim J, Reuhs L, Lion LW, Ghiorse WC (2001) Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environ Microbiol 12:774–784CrossRefGoogle Scholar
  13. Liu H, Fang HHP (2002) Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95:249–256CrossRefGoogle Scholar
  14. Liu H, Fang HHP (2003) Influences of extracellular polymeric substances (EPS) on flocculation, settling and dewatering of activated sludge. Crit Rev Environ Sci Technol 33:237–273CrossRefGoogle Scholar
  15. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  16. Mao J, Cory RM, McKnight DM, Schmidt-Rohr K (2007) Characterisation of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR. Org Geochem 38:1277–1292CrossRefGoogle Scholar
  17. Mayer C, Lattner D, Schürks N (2001) 13C nuclear magnetic resonance studies on selectively labeled biofilms. J Ind Microbiol Biotech 26:62–69CrossRefGoogle Scholar
  18. McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051–1057CrossRefGoogle Scholar
  19. Mitchell DA, Gumbira-Salid E, Greenfield PF, Doelle HW (1991) Protein measurement in solid-state fermentation. Biotechnol Tech 26:437–442CrossRefGoogle Scholar
  20. Neide E, Carrilho VM, Ferreira AG, Gilbert TR (2002) Characterization of sorption sites on Pilayella littoralis and metal binding assessment using 113Cd and 27Al nuclear magnetic resonance. Environ Sci Technol 36:2003–2007CrossRefGoogle Scholar
  21. Ng FMW, Dawes EA (1973) Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeroginosa by citrate. Biochem J 132:129–140Google Scholar
  22. Peterson GL (1979) Review of the folin protein quantification method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100:201–220CrossRefGoogle Scholar
  23. Ras M, Girbal-Neuhauser E, Paul E, Sperandio M, Lefebure M (2008) Protein extraction from activated sludge: an analytical approach. Water Res 42:1867–1878CrossRefGoogle Scholar
  24. Rode A (2004) Isolierung und Charakterisierung von bakteriellen extrazellulären polymeren Substanzen aus Biofilmen. Ph.D. thesis. University of Duisburg, GermanyGoogle Scholar
  25. Schultheiss E, Dreger MA, Nimtz M, Wray V, Hempel DC, Nörtemann B (2008) Structural characterisation of the exopolysaccharide PS-EDIV from Sphingomonas pituitosa strain DSM 13101. Appl Microbiol Biotechnol 78:1017–1024CrossRefGoogle Scholar
  26. Sheng GP, Yu HQ (2006) Relationship between the extracellular polymeric substances and surface characteristics of Rodopseudomonas acidophila. Appl Microbiol Biotechnol 72:126–131CrossRefGoogle Scholar
  27. Sheng GP, Yu HQ, Yu Z (2005) Extraction of extracellular polymeric substances from the photosynthetic bacterium Rodopseudomonas acidophila. Appl Microbiol Biotechnol 67:125–130CrossRefGoogle Scholar
  28. Smernik RJ, Oliver IW, Merrington G (2003) Characterisation of sewage sludge organic matter using solid-sate carbon-13 nuclear magnetic resonance spectroscopy. J Environ Qual 32:1516–1522CrossRefGoogle Scholar
  29. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9Google Scholar
  30. Ward WW, Fastiggi RJ (1972) Binding of EDTA to DEAE-cellulose and its interference with protein determinations. Anal Biochem 50:154–162CrossRefGoogle Scholar
  31. Wingender J, Neu TR, Flemming HC (1999) Extraction of EPS. In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances. Springer, Berlin, pp 49–69Google Scholar
  32. Zhou LX, Liang JR, Zhan XH, Wong JWC (2001) Fractionation and characterization of sludge bacterial extracellular polymers by FT-IR, 13C-NMR, 1H-NMR. Water Sci Technol 44:71–78Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ulrich Metzger
    • 1
  • Ulrich Lankes
    • 1
  • Kai Fischpera
    • 1
  • Fritz H. Frimmel
    • 1
  1. 1.Engler-Bunte-Institut, Bereich WasserchemieUniversität KarlsruheKarlsruheGermany

Personalised recommendations