Applied Microbiology and Biotechnology

, Volume 85, Issue 4, pp 1095–1104 | Cite as

Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors

  • Davide Antoniani
  • Paola Bocci
  • Anna Maciąg
  • Nadia Raffaelli
  • Paolo Landini
Applied Genetics and Molecular Biotechnology


In Gram-negative bacteria, production of bis-(3′,5′)-cyclic diguanylic acid (c-di-GMP) by diguanylate cyclases (DGCs) is the main trigger for production of extracellular polysaccharides and for biofilm formation. Mutants affected in c-di-GMP biosynthesis are impaired in biofilm formation, thus making DGCs interesting targets for new antimicrobial agents with anti-biofilm activity. In this report, we describe a strategy for the screening for DGC inhibitors consisting of a combination of three microbiological assays. The primary assay utilizes an Escherichia coli strain overexpressing the adrA gene, encoding the DGC protein AdrA, and relies on detection of AdrA-dependent cellulose production as red colony phenotype on solid medium supplemented with the dye Congo red (CR). Presence of DGC inhibitors blocking AdrA activity would result in a white phenotype on CR medium. The CR assay can be performed in 96-well microtiter plates, making it suitable for high-throughput screenings. To confirm specific inhibition of c-di-GMP biosynthesis, chemical compounds positive in the CR assay are tested for their ability to inhibit biofilm formation and in a reporter gene assay which monitors expression of curli-encoding genes as a function of DGC activity. Screening of a chemical library using the described approach allowed us to identify sulfathiazole, an antimetabolite drug, as an inhibitor of c-di-GMP biosynthesis. Sulfathiazole probably affects c-di-GMP biosynthesis in an indirect fashion rather than by binding to DGCs; however, sulfathiazole represents the first example of drug able to affect biofilm formation by interfering with c-di-GMP metabolism.


c-di-GMP Diguanylate cyclase Biofilm formation High-throughput screening Antimicrobial drugs Sulfathiazole 



We thank Grant Burgess for a critical reading of the manuscript, Pierfausto Seneci for providing us with the Prestwick Chemical Library, and Susanna Marcandalli for technical assistance. This study was supported by the Italian Foundation for Research on Cystic Fibrosis (project FFC#9/2006, adopted by “Gruppo Rocciatori di Belluno”) and by the CHEM-PROFARMA-NET Research Program of the Italian Ministry for University and Research (Project RBPR05NWWC_004).


  1. Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824CrossRefGoogle Scholar
  2. Attila C, Ueda A, Wood TK (2009) 5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound. Appl Microbiol Biotechnol 82:525–533CrossRefGoogle Scholar
  3. Bardonnet N, Blanco C (1992) uidA antibiotic resistance cassettes for insertion mutagenesis, gene fusion and genetic constructions. FEMS Microbiol Lett 93:243–248Google Scholar
  4. Bennhold H (1922) Eine spezifische Amyloidfärbung mit Kongorot [Specific staining of amyloid with Congo red]. Münch Med Wochenschr 69:1537–1538Google Scholar
  5. Blattner FR, Plumkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474CrossRefGoogle Scholar
  6. Clinical and Laboratory Standards Institute (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A7, 7th edn. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  7. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefGoogle Scholar
  8. Cotter PA, Stibitz S (2007) C-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10:17–23CrossRefGoogle Scholar
  9. Da Re S, Ghigo JM (2006) A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli. J Bacteriol 188:3073–3087CrossRefGoogle Scholar
  10. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645CrossRefGoogle Scholar
  11. De N, Pirruccello M, Krasteva PV, Bae N, Raghavan RV, Sondermann H (2008) Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6:e67CrossRefGoogle Scholar
  12. Di Martino P, Fursy R, Bret L, Sundararaju B, Phillips RS (2003) Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 49:443–449CrossRefGoogle Scholar
  13. Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P (1999) Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178:169–175CrossRefGoogle Scholar
  14. Galperin MY (2004) Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6:552–567CrossRefGoogle Scholar
  15. Gerstel U, Römling U (2001) Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ Microbiol 3:638–648CrossRefGoogle Scholar
  16. Gualdi L, Tagliabue L, Landini P (2007) Biofilm formation-gene expression relay system in Escherichia coli: modulation of sigmaS-dependent gene expression by the CsgD regulatory protein via sigma S protein stabilization. J Bacteriol 189:8034–8043CrossRefGoogle Scholar
  17. Gualdi L, Tagliabue L, Bertagnoli S, Ieranò T, De Castro C, Landini P (2008) Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154:2017–2024CrossRefGoogle Scholar
  18. Haasum Y, Ström K, Wehelie R, Luna V, Roberts MC, Maskell JP, Hall LM, Swedberg G (2001) Amino acid repetitions in the dihydropteroate synthase of Streptococcus pneumoniae lead to sulfonamide resistance with limited effects on substrate K(m). Antimicrob Agents Chemother 45:805–809CrossRefGoogle Scholar
  19. Hammer BK, Bassler BL (2009) Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J Bacteriol 191:169–177CrossRefGoogle Scholar
  20. Harrison JJ, Ceri H, Turner RJ (2007) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938CrossRefGoogle Scholar
  21. Harrison JJ, Wade WD, Akierman S, Vacchi-Suzzi C, Stremick CA, Turner RJ, Ceri H (2009) The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53:2253–2258CrossRefGoogle Scholar
  22. Häussler S (2004) Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6:546–551CrossRefGoogle Scholar
  23. Hayakawa Y, Reiko N, Hirata A, Hyodoa M, Kawaia R (2003) A facile synthesis of cyclic bis(3′ → 5′)diguanylic acid. Tetrahedron 59:6465–6471CrossRefGoogle Scholar
  24. Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME (2006) Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother 50:1463–1469CrossRefGoogle Scholar
  25. Jonas K, Edwards AN, Simm R, Romeo T, Römling U, Melefors O (2008) The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol 70:236–257CrossRefGoogle Scholar
  26. Jones HA, Lillard JW Jr, Perry RD (1999) HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 145:2117–2128CrossRefGoogle Scholar
  27. Kader A, Simm R, Gerstel U, Morr M, Römling U (2006) Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar typhimurium. Mol Microbiol 60:602–616CrossRefGoogle Scholar
  28. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S (2006) Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103:2839–2844CrossRefGoogle Scholar
  29. Malone JG, Williams R, Christen M, Jenal U, Spiers AJ, Rainey PB (2007) The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. Microbiology 153:980–994CrossRefGoogle Scholar
  30. Méndez-Ortiz MM, Hyodo M, Hayakawa Y, Membrillo-Hernández J (2006) Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3′, 5′-cyclic diguanylic acid. J Biol Chem 281:8090–8099CrossRefGoogle Scholar
  31. Miller JH (ed) (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold spring Harbor, NYGoogle Scholar
  32. Mills SD (2006) When will the genomics investment pay off for antibacterial discovery? Biochem Pharmacol 71:1096–1102CrossRefGoogle Scholar
  33. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461CrossRefGoogle Scholar
  34. Olsén A, Jonsson A, Normark S (1989) Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655CrossRefGoogle Scholar
  35. Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727CrossRefGoogle Scholar
  36. Perry JR, Miller GR (1989) Quality control slide for potassium hydroxide and cellufluor fungal preparation. J Clin Microbiol 27:1411–1412Google Scholar
  37. Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A, Hengge R (2008) Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22:2434–2446CrossRefGoogle Scholar
  38. Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C (2001) Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:7213–7223CrossRefGoogle Scholar
  39. Robbe-Saule V, Jaumouille V, Prevost MC, Guadagnini S, Talhouarne C, Mathout H, Kolb A, Norel F (2006) Crl activates transcription initiation of RpoS-regulated genes involved in the multicellular behavior of Salmonella enterica serovar typhimurium. J Bacteriol 188:3983–3994CrossRefGoogle Scholar
  40. Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 2:218–228CrossRefGoogle Scholar
  41. Römling U, Rohde M, Olsén A, Normark S, Reinköster J (2000) AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23CrossRefGoogle Scholar
  42. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58Google Scholar
  43. Simm R, Morr M, Kader A, Nimtz M, Römling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134CrossRefGoogle Scholar
  44. Simm R, Morr M, Remminghorst U, Andersson M, Römling U (2009) Quantitative determination of cyclic diguanosine monophosphate concentrations in nucleotide extracts of bacteria by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Anal Biochem 386:53–58CrossRefGoogle Scholar
  45. Stocchi V, Cucchiarini L, Magnani M, Chiarantini L, Palma P, Crescentini G (1985) Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem 146:118–124CrossRefGoogle Scholar
  46. Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148CrossRefGoogle Scholar
  47. Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8:1997–2011CrossRefGoogle Scholar
  48. Ueda A, Attila C, Whiteley M, Wood TK (2009) Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microb Biotechnol 2:62–74CrossRefGoogle Scholar
  49. Vedantam G, Nichols BP (1998) Characterization of a mutationally altered dihydropteroate synthase contributing to sulfathiazole resistance in Escherichia coli. Microb Drug Resist 4:91–97CrossRefGoogle Scholar
  50. Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R (2006) Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62:1014–1034CrossRefGoogle Scholar
  51. Wermuth GC (2006) Selective optimization of side activities: the SOSA approach. Drug Discov Today 11:160–164CrossRefGoogle Scholar
  52. Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Davide Antoniani
    • 1
  • Paola Bocci
    • 2
  • Anna Maciąg
    • 1
  • Nadia Raffaelli
    • 2
  • Paolo Landini
    • 1
  1. 1.Department of Biomolecular Sciences and BiotechnologyUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Molecular Pathology and Innovative Therapies, Section of BiochemistryUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations