Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches


Biodegradation can achieve complete and cost-effective elimination of aromatic pollutants through harnessing diverse microbial metabolic processes. Aromatics biodegradation plays an important role in environmental cleanup and has been extensively studied since the inception of biodegradation. These studies, however, are diverse and scattered; there is an imperative need to consolidate, summarize, and review the current status of aromatics biodegradation. The first part of this review briefly discusses the catabolic mechanisms and describes the current status of aromatics biodegradation. Emphasis is placed on monocyclic, polycyclic, and chlorinated aromatic hydrocarbons because they are the most prevalent aromatic contaminants in the environment. Among monocyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene; phenylacetic acid; and structurally related aromatic compounds are highlighted. In addition, biofilms and their applications in biodegradation of aromatic compounds are briefly discussed. In recent years, various biomolecular approaches have been applied to design and understand microorganisms for enhanced biodegradation. In the second part of this review, biomolecular approaches, their applications in aromatics biodegradation, and associated biosafety issues are discussed. Particular attention is given to the applications of metabolic engineering, protein engineering, and “omics” technologies in aromatics biodegradation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Adriaens P, Focht DD (1990) Continuous coculture degradation of selected polychlorinated biphenyl congeners by Acinetobacter spp in an aerobic reactor system. Environ Sci Technol 24:1042–1049

  2. Adrian L, Hansen SK, Fung JM, Gorisch H, Zinder SH (2007) Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41:2318–2323

  3. Ahamad P, Kunhi A (1996) Degradation of phenol through ortho-cleavage pathway by Pseudomonas stutzeri SPC2. Lett Appl Microbiol 22:26–29

  4. Ahrenholtz I, Lorenz MG, Wackernagel W (1994) A conditional suicide system in Escherichia coli based on the intracellular degradation of DNA. Appl Environ Microbiol 60:3746–3751

  5. Alagappan G, Cowan RM (2004) Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere 54:1255–1265

  6. Aldrich TL, Frantz B, Gill JF, Kilbane JJ, Chakrabarty AM (1987) Cloning and complete nucleotide-sequence determination of the catB gene encoding cis, cis-muconate lactonizing enzyme. Gene 52:185–195

  7. Alvarez PJ, Vogel TM (1991) Substrate interactions of benzene, toluene, and paraxylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl Environ Microbiol 57:2981–2985

  8. Amor L, Kennes C, Veiga MC (2001) Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals. Bioresour Technol 78:181–185

  9. Anderson RT, Lovley DR (1997) Ecology and biogeochemistry of in situ groundwater bioremediation. Adv Microb Ecol 15:289–350

  10. Ang EL, Zhao H, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb Technol 37:487–496

  11. Annweiler E, Materna A, Safinowski M, Kappler A, Richnow HH, Michaelis W, Meckenstock RU (2000) Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:5329–5333

  12. Arias-Barrau E, Olivera ER, Luengo JM, Fernandez C, Galan B, Garcia JL, Diaz E, Minambres B (2004) The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J Bacteriol 186:5062–5077

  13. Arias-Barrau E, Sandoval N, Naharro G, Olivera ER, Luengo JM (2005) A two-component hydroxylase involved in the assimilation of 3-hydroxyphenyl acetate in Pseudomonas putida. J Biol Chem 280:26435–26447

  14. Ashok BT, Saxena S (1995) Biodegradation of polycyclic aromatic hydrocarbons—a review. J Sci Ind Res 54:443–451

  15. Asturias JA, Moore E, Yakimov MM, Klatte S, Timmis KN (1994) Reclassification of the polychlorinated biphenyl-degraders Acinetobacter sp strain P6 and Corynebacterium sp strain Mb1 as Rhodococcus globerulus. Syst Appl Microbiol 17:226–231

  16. Attaway H, Schmidt M (2002) Tandem biodegradation of BTEX components by two Pseudomonas sp. Curr Microbiol 45:30–36

  17. Baggi G, Parbieri P, Galli E, Tollari S (1987) Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl Environ Microbiol 53:2129–2132

  18. Ball HA, Johnson HA, Reinhard M, Spormann AM (1996) Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J Bacteriol 178:5755–5761

  19. Ballerstedt H, Hantke J, Bunge M, Werner B, Gerritse J, Andreesen JR, Lechner U (2004) Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. Fems Microbiol Ecol 47:223–234

  20. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

  21. Baraldi EA, Damianovic M, Manfio GR, Foresti E, Vazoller RF (2008) Performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor and dynamics of the microbial community during degradation of pentachlorophenol (PCP). Anaerobe 14:268–274

  22. Barriault D, Sylvestre M (2004) Evolution of the biphenyl dioxygenase BphA from Burkholderia xenovorans LB400 by random mutagenesis of multiple sites in region III. J Biol Chem 279:47480–47488

  23. Beaudet R, Levesque MJ, Villemur R, Lanthier M, Chenier M, Lepine F, Bisaillon JG (1998) Anaerobic biodegradation of pentachlorophenol in a contaminated soil inoculated with a methanogenic consortium or with Desulfitobacterium frappieri strain PCP-1. Appl Microbiol Biotechnol 50:135–141

  24. Becher D, Specht M, Hammer E, Francke W, Schauer F (2000) Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp strain SBUG 290. Appl Environ Microbiol 66:4528–4531

  25. Bergeron J, Ahmad D, Barriault D, Larose A, Sylvestre M, Powlowski J (1994) Identification and mapping of the gene translation products involved in the first steps of the Comamonas testosteroni B356 biphenyl chlorobiphenyl biodegradation pathway. Can J Microbiol 40:743–753

  26. Berka RM, Cui XJ, Yanofsky C (2003) Genomewide transcriptional changes associated with genetic alterations and nutritional supplementation affecting tryptophan metabolism in Bacillus subtilis. Proc Natl Acad Sci U S A 100:5682–5687

  27. Bhatt P, Kumar MS, Mudliar S, Chakrabarti T (2007) Biodegradation of chlorinated compounds—a review. Crit Rev Environ Sci Technol 37:165–198

  28. Boersma MG, Solyanikova IP, Van Berkel WJH, Vervoort J, Golovleva LA, Rietjens I (2001) F-19 NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. J Ind Microbiol Biotechnol 26:22–34

  29. Bouchard B, Beaudet R, Villemur R, McSween G, Lepine F, Bisaillon JG (1996) Isolation and characterization of Desulfitobacterium frappieri sp nov, an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int J Syst Bacteriol 46:1010–1015

  30. Bouchez M, Blanchet D, Vandecasteele J-P (1995) Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain assocciations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol 43:156–164

  31. Bouwer EJ, Zehnder AJB (1993) Bioremediation of organic compounds—putting microbial metabolism to work. Trends Biotechnol 11:360–367

  32. Canada KA, Iwashita S, Shim H, Wood TK (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J Bacteriol 184:344–349

  33. Cerniglia C (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

  34. Chakraborty R, Coates JD (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64:437–446

  35. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

  36. Chang M, Voice T, Criddle C (1993) Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates. Biotechnol Bioeng 41:1057–1065

  37. Chang BV, Wu WB, Yuan SY (1997) Biodegradation of benzene, toluene, and other aromatic compounds by Pseudomonas sp. D8. Chemosphere 35:2807–2815

  38. Chatterjee DK, Kellogg ST, Hamada S, Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho-pathway. J Bacteriol 146:639–646

  39. Chen CI, Taylor RT (1995) Thermophilic biodegradation of BTEX by two Thermus species. Biotechnol Bioeng 48:614-624

  40. Chiu TC, Yen JH, Liu TL, Wang YS (2004) Anaerobic degradation of the organochlorine pesticides DDT and heptachlor in river sediment of Taiwan. Bull Environ Contam Toxicol 72:821–828

  41. Chung SY, Maeda M, Song E, Horikoshi K, Kudo T (1994) A Gram-positive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis strain Ta421, isolated from a termite ecosystem. Biosci Biotechnol Biochem 58:2111–2113

  42. Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043

  43. Cobos-Vasconcelos DDL, Santoyo-Tepole F, Juarez-Ramirez C, Ruiz-Ordaz N, Galindez-Mayer CJJ (2006) Cometabolic degradation of chlorophenols by a strain of Burkholderia in fed-batch culture. Enzyme Microb Technol 40:57–60

  44. Committee on the Biological Confinement of Genetically Engineered Organisms (2004) Biological confinement of genetically engineered organisms. The National Academies Press, Washington DC

  45. Contreras A, Molin S, Ramos JL (1991) Conditional suicide containment system for bacteria which mineralize aromatics. Appl Environ Microbiol 57:1504–1508

  46. Davey M, O’Toole G (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

  47. Dean-Ross D, Moody J, Freeman J, Doerge D, Cerniglia C (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204:205–211

  48. Deeb R, Cohen L (1999) Temperature effects and substrate interactions during the aerobic transformation of BTEX mixtures by toluene enriched consortia and Rhodococcus rhodochrous. Biotechnol Bioeng 62:526–536

  49. Deeb R, Cohen L (2000) Aerobic transformation of gasoline aromatics in multicomponent mixtures. Bioremed J 4:1–9

  50. Delawary M, Ohtsubo Y, Ohta A (2003) The dual functions of biphenyl-degrading ability of Pseudomonas sp KKS102: energy acquisition and substrate detoxification. Biosci Biotechnol Biochem 67:1970–1975

  51. Demir G (2004) Degradation of toluene and benzene by Trametes versicolor. J Environ Biol 25:19–25

  52. Denef VJ, Park J, Tsoi TV, Rouillard JM, Zhang H, Wibbenmeyer JA, Verstraete W, Gulari E, Hashsham SA, Tiedje JM (2004) Biphenyl and benzoate metabolism in a genomic context: outlining genome-wide metabolic networks in Burkholderia xenovorans LB400. Appl Environ Microbiol 70:4961–4970

  53. Dennis JJ (2005) The evolution of IncP catabolic plasmids. Curr Opin Biotechnol 16:291–298

  54. Deweerd KA, Suflita JM (1990) Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of Desulfomonile tiedjei. Appl Environ Microbiol 56:2999–3005

  55. Diaz E (2004) Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173–180

  56. Diaz E, Prieto MA (2000) Bacterial promoters triggering biodegradation of aromatic pollutants. Curr Opin Biotechnol 11:467–475

  57. Diels L, Mergeay M (1990) DNA probe-mediated detection of resistant bacteria from soils highly pollutied by heavy metals. Appl Environ Microbiol 56:1485–1491

  58. DiGioia D, Sciubba L, Bertin L, Barberio C, Salvadori L, Frassinetti S, Fava F (2009) Nonylphenol polyethoxylate degradation in aqueous waste by the use of batch and continuous biofilm bioreactors. Water Res 43:2977–2988

  59. Dominguez-Cuevas P, Gonzalez-Pastor JE, Marques S, Ramos JL, de Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991

  60. Duetz W, de Jong C, Williams P, van Andel JG (1994) Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene. Appl Environ Microbiol 60:2858–2863

  61. Duhamel M, Mo K, Edwards EA (2004) Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl Environ Microbiol 70:5538–5545

  62. Elasri M, Miller R (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65:2025–2031

  63. Eriksson M, Sodersten E, Yu ZT, Dalhammar G, Mohn WW (2003) Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Appl Environ Microbiol 69:275–284

  64. Estevez E, Veiga MC, Kennes C (2005) Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biotechnol 32:33–37

  65. Farhadian M, Duchez D, Vachelard C, Larroche C (2008) Monoaromatics removal from polluted water through bioreactors—a review. Water Res 42:1325–1341

  66. Feitkenhauer H, Muller R, Markl H (2003) Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60–70°C by Thermus and Bacillus spp. Biodegradation 14:367–372

  67. Ferrandez A, Minambres B, Garcia B, Olivera ER, Luengo JM, Garcia JL, Diaz E (1998) Catabolism of phenylacetic acid in Escherichia coli—characterization of a new aerobic hybrid pathway. J Biol Chem 273:25974–25986

  68. Garcia B, Olivera ER, Minambres B, Fernandez-Valverde M, Canedo LM, Prieto MA, Garcia JL, Martinez M, Luengo JM (1999) Novel biodegradable aromatic plastics from a bacterial source—genetic and biochemical studies on a route of the phenylacetyl-CoA catabolon. J Biol Chem 274:29228–29241

  69. Gerritse J, Renard V, Gomes TMP, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165:132–140

  70. Ghazali F, Rahman R, Salleh A, Basari M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54:61–67

  71. Goncalves ER, Hara H, Miyazawa D, Davies JE, Eltis LD, Mohn WW (2006) Transcriptomic assessment of isozymes in the biphenyl pathway of Rhodococcus sp strain RHA1. Appl Environ Microbiol 72:6183–6193

  72. Gonzalez G, Herrera G, Garcia MT, Pena M (2001) Biodegradation of phenolic industrial wastewater in a fluidized bed reactor with immobilized cells of Pseudomonas putida. Bioresour Technol 80:137–142

  73. Goris J, De Vos P, Caballero-Mellado J, Park J, Falsen E, Quensen JF, Tiedje JM, Vandamme P (2004) Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400 and relatives as Burkholderia xenovorans sp nov. Int J Syst Evol Microbiol 54:1677–1681

  74. Gulensory N, Alvarez P (1999) Diversity and correlation of specific aromatic hydrocarbon biodegradation capabilities. Biodegradation 10:331–340

  75. Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R, Widdel F (1999) Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004

  76. Haro MA, de Lorenzo V (2001) Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J Biotechnol 85:103–113

  77. Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590

  78. Henikoff S, Haughn GW, Calvo JM, Wallace JC (1988) A large family of bacterial activator proteins. Proc Natl Acad Sci U S A 85:6602–6606

  79. Hermann H, Muller C, Schmidt I, Mahnke J, Petruschka L, Hahnke K (1995) Localization and organization of phenol degradation genes of Pseudomonas strain H. Mol Gen Genet 247:240–246

  80. Hess A, Zarda B, Hahn D, Haner A, Stax D, Hohener P, Zeyer J (1997) In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 63:2136–2141

  81. Hickey WJ, Sabat G, Yuroff AS, Arment AR, Perez-Lesher J (2001) Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2. Appl Environ Microbiol 67:4603–4609

  82. Hoffmann D, Kleinsteuber S, Muller RH, Babel W (2003) A transposon encoding the complete 2, 4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. Microbiology 149:2545–2556

  83. Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723

  84. Hrywna Y, Tsoi TV, Maltseva OV, Quensen JF, Tiedje JM (1999) Construction and characterization of two recombinant bacteria that grow on ortho- and para-substituted chlorobiphenyls. Appl Environ Microbiol 65:2163–2169

  85. Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci U S A 100:13591–13596

  86. Juang RS, Kao HC (2009) Estimation of the contribution of immobilized biofilm and suspended biomass to the biodegradation of phenol in membrane contactors. Biochem Eng J 43:122–128

  87. Juang RS, Wu CY (2007) Microbial degradation of phenol in high-salinity solutions in suspensions and hollow fiber membrane contactors. Chemosphere 66:191–198

  88. Jung IG, Park CH (2004) Characteristics of Rhodococcus pyridinovorans PYJ-1 for the biodegradation of benzene, toluene, m-xylene (BTX), and their mixtures. J Biosci Bioeng 97:429–431

  89. Kang DG, Choi SS, Cha HJ (2006) Enhanced biodegradation of toxic organophosphate compounds using recombinant Escherichia coli with sec pathway-driven periplasmic secretion of organophosphorus hydrolase. Biotechnol Prog 22:406–410

  90. Kang E, Oh JM, Lee J, Kim YC, Min KH, Min KR, Kim Y (1998) Genetic structure of the bphG gene encoding 2-hydroxymuconic semialdehyde dehydrogenase of Achromobacter xylosoxidans KF701. Biochem Biophys Res Commun 246:20–25

  91. Keenan BG, Leungsakul T, Smets BF, Wood TK (2004) Saturation mutagenesis of Burkholderia cepacia R34 2, 4-dinitrotoluene dioxygenase at DntAc valine 350 for synthesizing nitrohydroquinone, methylhydroquinone, and methoxyhydroquinone. Appl Environ Microbiol 70:3222–3231

  92. Kelley I, Freeman JP, Cerniglia CE (1990) Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation 1:283–290

  93. Khodursky AB, Peter BJ, Cozzarelli NR, Botstein D, Brown PO, Yanofsky C (2000) DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. Proc Natl Acad Sci U S A 97:12170–12175

  94. Khomenkov V, Shevelev A, Zhukov V, Zagustina N, Bezborodov A, Popov V (2008) Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: a review. Appl Biochem Microbiol 44:117–135

  95. Kim J, Jeon C (2009) Isolation and characterization of a new benzene, toluene, and ethylbenzene degrading bacterium, Acinetobacter sp. B113. Curr Microbiol 58:70–75

  96. Kim JM, Le NT, Chung BS, Park JH, Bae JW, Madsen EL, Jeon CO (2008) Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BDa59. Appl Environ Microbiol 74:7313–7320

  97. Kim D, Kim Y, Kim S, Kim S, Zylstra G, Kim Y, Kim E (2002) Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl Environ Microbiol 68:3270–3278

  98. Kim S, Kweon O, Cerniglia C (2009) Proteomic applications to elucidate bacterial aromatic hydrocarbon metabolic pathways. Curr Opin Microbiol 12:1–9

  99. Kuhner S, Wohlbrand L, Fritz I, Wruck W, Hultschig C, Hufnagel P, Kube M, Reinhardt R, Rabus R (2005) Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 187:1493–1503

  100. Lee J, Roh J, Kim H (1993) Metabolic engineering of Pseudomonas putida for the simultaneous biodegradation of benzene, toluene, and p-xylene mixture. Biotechnol Bioeng 43:1146–1152

  101. Lee J, Jung K, Choi S, Kim H (1995) Combination of the tod and the tol pathways in redesigning a metabolic route of Pseudomonas putida for the mineralization of a benzene, toluene, and p-xylene mixture. Appl Environ Microbiol 61:2211–2217

  102. Lee S, Lee S (2001) Isolation and characterization of a thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades benzene, toluene, ethyl benzene and o-xylene. Appl Environ Microbiol 56:270–275

  103. Li Y, Loh KC (2006a) Activated carbon impregnated polysulfone hollow fiber membrane for cell immobilization and cometabolic biotransformation of 4-chlorophenol in the presence of phenol. J Membr Sci 276:81–90

  104. Li Y, Loh KC (2006b) Continuous cometabolic transformation of 4-chlorophenol in the presence of phenol in a hollow fiber membrane bioreactor. J Environ Eng-ASCE 132:309–314

  105. Li H, Liu YH, Luo N, Zhang XY, Luan TG, Hu JM, Wang ZY, Wu PC, Chen MJ, Lu JQ (2006) Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22. Res Microbiol 157:629–636

  106. Lindow SE (1995) The use of reporter genes in the study of microbial ecology. Mol Ecol 4:555–566

  107. Linkfield TG, Tiedje JM (1990) Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J Ind Microbiol 5:9–16

  108. Liu S, Ogawa N, Miyashita K (2001) The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Gene 268:207–214

  109. Loh K, Cao B (2008) Paradigm in biodegradation using Pseudomonas putida—a review of proteomics studies. Enzyme Microb Technol 43:1–12

  110. Loh KC, Ranganath S (2005) External-loop fluidized bed airlift bioreactor (EFBAB) for the cometabolic biotransformation of 4-chlorophenol (4-cp) in the presence of phenol. Chem Eng Sci 60:6313–6319

  111. Loh KC, Wang Y (2006) Enhanced cometabolic transformation of 4-chlorophenol in the presence of phenol by granular activated carbon adsorption. Can J Chem Eng 84:248–255

  112. Loh KC, Wu TT (2006) Cometabolic transformation of 2-chlorophenol and 4-chlorophenol in the presence of phenol by Pseudomonas putida. Can J Chem Eng 84:356–367

  113. Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–300

  114. Luengo J, Arias S, Arcos M, Olivera E (2007) The catabolism of phenylacetic acid and other related molecules in Pseudomonas putida U in Pseudomonas: a model system in biology edited by Ramos J. Springer, Filloux A

  115. Luengo JM, Garcia JL, Olivera ER (2001) The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. Mol Microbiol 39:1434–1442

  116. Lundstedt S, Haglund P, Oberg L (2003) Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an acid aged gasworks soil. Environ Toxicol Chem 22:1413–1420

  117. Lunt D, Evans WC (1970) The microbial metabolism of biphenyl. Biochem J 118:54–55

  118. Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulphate-reducing enrichment culture. Appl Environ Microbiol 66:2743–2747

  119. Meckenstock RU, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. Fems Microbiol Ecol 49:27–36

  120. Meyer A, Held M, Schmid A, Kohler HPE, Witholt B (2003) Synthesis of 3-tert-butylcatechol by an engineered monooxygenase. Biotechnol Bioeng 81:518–524

  121. Minambres B, MartinezBlanco H, Olivera ER, Garcia B, Diez B, Barredo JL, Moreno MA, Schleissner C, Salto F, Luengo JM (1996) Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase—use of this gene to improve the rate of benzylpenicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 271:33531–33538

  122. Mishra V, Lal R, Srinivasan (2001) Enzymes and operons mediating xenobiotic degradation in bacteria. Crit Rev Microbiol 27:133–166

  123. Mitchell K, Studts J, Fox B (2002) Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity. Biochemistry 41:3176–3188

  124. Mohn WW, Kennedy KJ (1992) Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl Environ Microbiol 58:1367–1370

  125. Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507

  126. Moiseeva OV, Solyanikova IP, Kaschabek SR, Groning J, Thiel M, Golovleva LA, Schlomann M (2002) A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. J Bacteriol 184:5282–5292

  127. Molin S, Boe L, Jensen LB, Kristensen CS, Givskov M, Ramos JL, Bej AK (1993) Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol 47:139–166

  128. Monds R, O’Toole G (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

  129. Monti MR, Smania AM, Fabro G, Alvarez ME, Argarana CE (2005) Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene. Appl Environ Microbiol 71:8864–8872

  130. Moody J, Freeman J, Doerge D, Cerniglia C (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:1476–1483

  131. Moon J, Kang E, Min KR, Kim CK, Min KH, Lee KS, Kim Y (1997) Characterization of the gene encoding catechol 2,3-dioxygenase from Achromobacter xylosoxidans KF701. Biochem Biophys Res Commun 238:430–435

  132. Muller JA, Rosner BM, von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM (2004) Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp strain VS and its environmental distribution. Appl Environ Microbiol 70:4880–4888

  133. Nicolella C, Zolezzi M, Furfaro M, Cattaneo C, Rovatti M (2007) High-rate degradation of aromatic sulfonates in a biofilm airlift suspension reactor. Ind Eng Chem Res 46:6674–6680

  134. Nilotpala P, Ingle A (2003) Degradation of phenol through ortho pathway by Pseudomonas sp. BC1. Indian J Microbiol 43:267–269

  135. Ogawa N, Miyashita K (1999) The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl Environ Microbiol 65:724–731

  136. Oh Y, Bartha R (1997) Construction of a bacterial consortium for the biofiltration of benzene, toluene and xylene emission. World J Microbiol Biotechnol 13:627–632

  137. Oh Y, Sharafdeen Z, Baltizs B, Bartha R (1994) Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation. Biotechnol Bioeng 44:533–538

  138. Ohtsubo Y, Shimura M, Delawary M, Kimbara K, Takagi M, Kudo T, Ohta A, Nagata Y (2003) Novel approach to the improvement of biphenyl and polychlorinated biphenyl degradation activity: promoter implantation by homologous recombination. Appl Environ Microbiol 69:146–153

  139. Okuta A, Ohnishi K, Harayama S (2004) Construction of chimeric catechol 2,3-dioxygenase exhibiting improved activity against the suicide inhibitor 4-methylcatechol. Appl Environ Microbiol 70:1804–1810

  140. Olivera ER, Minambres B, Garcia B, Muniz C, Moreno MA, Ferrandez A, Diaz E, Garcia JL, Luengo JM (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci U S A 95:6419–6424

  141. Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104

  142. Parsek MR, Ye RW, Pun P, Chakrabarty AM (1994) Critical nucleotides in the interaction of a Lysr-type regulator with its target promoter region—CatBC promoter activation by CatR. J Biol Chem 269:11279–11284

  143. Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191

  144. Poh RPC, Smith ARW, Bruce IJ (2002) Complete characterisation of Tn5530 from Burkholderia cepacia strain 2a (pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism. Plasmid 48:1–12

  145. Polen I, Kramer A, Bongaerts J, Wubbolts M, Wendisch VF (2005) The global gene expression response of Escherichia coli to L-phenylalanine. J Biotechnol 115:221–237

  146. Pollmann K, Wray V, Hecht HJ, Pieper DH (2003) Rational engineering of the regioselectivity of TecA tetrachlorobenzene dioxygenase for the transformation of chlorinated toluenes. Microbiology 149:903–913

  147. Potrawfke T, Armengaud J, Wittich RM (2001) Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. J Bacteriol 183:997–1011

  148. Prosser JI, Killham K, Glover LA, Rattray EAS (1996) Luminescence-based systems for detection of bacteria in the environment. Crit Rev Biotechnol 16:157–183

  149. Prenafeta-Boldu FX, Vervoort J, Grotenhuis JTC, van Groenestijn (2002) Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fugus Cladophialophora sp. strain T1. Appl Environ Microbiol 68:2660–2665

  150. Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic-hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103

  151. Reardon KF, Mosteller DC, Rogers JB (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400

  152. Reardon K, Mosteller D, Rogers J, Du Teau N, Hong K (2002) Biodegradation kinetics of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environ Health Perspect 110:1005–1011

  153. Reineke W (1998) Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52:287–331

  154. Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092

  155. Rhee SK, Liu XD, Wu LY, Chong SC, Wan XF, Zhou JZ (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70:4303–4317

  156. Rivas I, Arvin E (2000) Biodegradation of thiophene by cometabolism in a biofilm system. Water Sci Technol 41:461–468

  157. Rockne KJ, Chee-Sanford JC, Sanford RA, Hedlund BP, Staley JT, Strand SE (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 66:1595–1601

  158. Rogers JB, Reardon KF (2000) Modeling substrate interactions during the biodegradation of mixtures of toluene and phenol by Burkholderia species JS150. Biotechnol Bioeng 70:428–435

  159. Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063

  160. Rui LY, Kwon YM, Fishman A, Reardon KF, Wood TK (2004) Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for enhanced 1-naphthol synthesis and chloroform degradation. Appl Environ Microbiol 70:3246–3252

  161. Ruppe S, Neumann A, Vetter W (2003) Anaerobic transformation of compounds of technical toxaphene. I. Regiospecific reaction of chlorobornanes with geminal chlorine atoms. Environ Toxicol Chem 22:2614–2621

  162. Ruppe S, Neumann A, Braekevelt E, Tomy GT, Stern GA, Maruya KA, Vetter W (2004) Anaerobic transformation of compounds of technical toxaphene. 2. Fate of compounds lacking geminal chlorine atoms. Environ Toxicol Chem 23:591–598

  163. Saagua MC, Vieira G, Paveia H, Anselmo A (1998) Isolation and preliminary characterization of Bacillus sp. MCS, a Gram-positive 4-chlorobiphenyl degrading bacterium. Int Biodeterior Biodegrad 42:39–43

  164. Sanford RA, Cole JR, Loffler FE, Tiedje JN (1996) Characterization of Desulfitobacterium chlororespirans sp nov, which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol 62:3800–3808

  165. Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900

  166. Sariaslani F, Harper D, Higgins I (1974) Microbial degradation of hydrocarbons: catabolism of 1-phenylalkanes by Nocardia salmonicolor. Biochem J 140:31–45

  167. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

  168. Shelton DR, Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl Environ Microbiol 48:840–848

  169. Shim H, Shin EB, Yang ST (2002) A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens. Adv Environ Res 7:203-216

  170. Shimura M, Mukerjee-Dhar G, Kimbara K, Nagato H, Kiyohara H, Hatta T (1999) Isolation and characterization of a thermophilic Bacillus sp JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol Lett 178:87–93

  171. Shuttleworth K, Cerniglia C (1995) Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol 54:291–302

  172. Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

  173. Singh S, Kang S, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19:437–444

  174. Stephenson J, Warnes A (1996) Release of genetically modified micro-organisms into the environment. J Chem Technol Biotechnol 65:5–14

  175. Stoecker MA, Herwig RP, Staley JT (1994) Rhodococcus zopfii sp. nov., a toxicantdegrading bacterium. Int J Syst Bacteriol 44:106–110

  176. Suyama A, Iwakiri R, Kimura N, Nishi A, Nakamura K, Furukawa K (1996) Engineering hybrid Pseudomonads capable of utilizing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene. J Bacteriol 178:4039–4046

  177. Tabak H, Lazorchak J, Lei L, Khodadoust A, Antia J, Bagchi R, Suidan M (2003) Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues. Environ Toxicol Chem 22:473–482

  178. Tao Y, Fishman A, Bentley W, Wood T (2004) Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR-1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Appl Environ Microbiol 70:3814–3820

  179. Tartakovsky B, Levesque MJ, Dumortier R, Beaudet R, Guiot SR (1999) Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 65:4357–4362

  180. Trefault N, De la Iglesia R, Molina AM, Manzano M, Ledger T, Perez-Pantoja D, Sanchez MA, Stuardo M, Gonzalez B (2004) Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668

  181. Tropel D, van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68:474–500

  182. Vainberg S, Togna AP, Sutton PM, Steffan RJ (2002) Treatment of MTBEcontaminated water in fluidized bed bioreactor. J Environ Eng 128:842-851

  183. van Herwijnen R, Springael D, Slot P, Govers HAJ, Parsons JR (2003a) Degradation of anthracene by Mycobacterium sp strain LB501T proceeds via a novel pathway, through o-phthalic acid. Appl Environ Microbiol 69:186–190

  184. van Herwijnen R, Wattiau P, Bastiaens L, Daal L, Jonker L, Springael D, Govers HAJ, Parsons JR (2003b) Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp LB126. Res Microbiol 154:199–206

  185. Vandentweel WJJ, Smits JP, Debont JAM (1988) Catabolism of DL-alpha-phenylhydracrylic, phenylacetic and 3-hydroxyphenylacetic and 4-hydrophenylacetic acid via homogentisate acid in a Flavobacterium sp. Arch Microbiol 149:207–213

  186. Vandermeer JR, Vanneerven ARW, Devries EJ, Devos WM, Zehnder AJB (1991) Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichlorobenzene, 1,4-dichlorobenzene, and 1,2,4-trichlorobenzene of Pseudomonas sp strain P51. J Bacteriol 173:6–15

  187. Vasudevan N, Mahadevan A (1992) Utilization of complex phenolic compounds by Acinetobacter sp. Appl Microbiol Biotechnol 37:404–407

  188. Walker AW, Keasling JD (2002) Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnol Bioeng 78:715–721

  189. Wang AA, Chen W, Mulchandani A (2005) Detoxification of organophosphate nerve agents by immobilized dual functional biocatalysts in a cellulose hollow fiber bioreactor. Biotechnol Bioeng 91:379–386

  190. Wang AJA, Mulchandani A, Chen W (2002) Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. Appl Environ Microbiol 68:1684–1689

  191. Wang SJ, Loh KC (2000) New cell growth pattern on mixed substrates and substrate utilization in cometabolic transformation of 4-chlorophenol. Water Res 34:3786–3794

  192. Wang Z, Chen S (2009) Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 83:1–18

  193. Whiteley CG, Lee DJ (2006) Enzyme technology and biological remediation. Enzyme Microb Technol 38:291–316

  194. Wiegel J, Zhang XM, Wu QZ (1999) Anaerobic dehalogenation of hydroxylated polychlorinated biphenyls by Desulfitobacterium dehalogenans. Appl Environ Microbiol 65:2217–2221

  195. Wilson L, Bouwer E (1997) Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J Ind Microbiol Biotechnol 18:116–130

  196. Wood T (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578

  197. Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp strain CNB-1. Appl Environ Microbiol 72:1759–1765

  198. Yadav JS, Reddy CA (1993) Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:756–762

  199. Yildirim S, Franko TT, Wohlgemuth R, Kohler HPE, Witholt B, Schmid A (2005) Recombinant chlorobenzene dioxygenase from Pseudomonas sp P51: a biocatalyst for regioselective oxidation of aromatic nitriles. Adv Synth Catal 347:1060–1072

  200. Yoem SH, Yoo YJ (1999) Removal of benzene in a hybrid bioreactor. Proc Biochem 34:281–288

  201. Yoshiyuki O, Toshiaki K, Masataka T, Yuji N (2004) Strategies for bioremediation of polychlorinated biphenyls. Appl Microbiol Biotechnol V65:250–258

  202. Yu H, Kim B, Rittmann B (2001) The roles of intermediates in biodegradation of benzene, toluene, and p-xylene by Pseudomonas putida F1. Biodegradation 12:455–463

  203. Zhang CL, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

  204. Zhang XM, Sullivan ER, Young LY (2000) Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11:117–124

  205. Zylstra G (1994) Molecular analysis of aromatic hydrocarbon degradation. In: Garte S (ed) Molecular environmental biology. Lewis Publishers, Boca Raton

Download references

Author information

Correspondence to Kai-Chee Loh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cao, B., Nagarajan, K. & Loh, K. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85, 207–228 (2009).

Download citation


  • Biodegradation
  • Aromatics
  • Molecular approaches
  • Metabolic engineering
  • Protein engineering
  • Omics technologies