Applied Microbiology and Biotechnology

, Volume 85, Issue 3, pp 731–739 | Cite as

Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol

  • Mervi H. Toivari
  • Hannu Maaheimo
  • Merja Penttilä
  • Laura Ruohonen
Applied Microbial and Cell Physiology

Abstract

Phosphoglucose isomerase-deficient (pgi1) strains of Saccharomyces cerevisiae were studied for the production of D-ribose and ribitol from D-glucose via the intermediates of the pentose phosphate pathway. Overexpression of the genes coding for NAD+-specific glutamate dehydrogenase (GDH2) of S. cerevisiae or NADPH-utilising glyceraldehyde-3-phosphate dehydrogenase (gapB) of Bacillus subtilis enabled growth of the pgi1 mutant strains on D-glucose. Overexpression of the gene encoding sugar phosphate phosphatase (DOG1) of S. cerevisiae was needed for the production of D-ribose and ribitol; however, it reduced the growth of the pgi1 strains expressing GDH2 or gapB in the presence of higher D-glucose concentrations. The CEN.PK2-1D laboratory strain expressing both gapB and DOG1 produced approximately 0.4 g l−1 of D-ribose and ribitol when grown on 20 g l−1 (w/v) D-fructose with 4 g l−1 (w/v) D-glucose. Nuclear magnetic resonance measurements of the cells grown with 13C-labelled D-glucose showed that about 60% of the D-ribose produced was derived from D-glucose. Strains deficient in both phosphoglucose isomerase and transketolase activities, and expressing DOG1 and GDH2 tolerated only low D-glucose concentrations (≤2 g l−1 (w/v)), but produced 1 g l−1 (w/v) D-ribose and ribitol when grown on 20 g l−1 (w/v) D-fructose with 2 g l−1 (w/v) D-glucose.

Keywords

Sugar alcohols Pentose sugars Saccharomyces cerevisiae Pentose phosphate pathway D-ribose Ribitol NMR 

Notes

Acknowledgements

Dr. Peter Richard is acknowledged for providing the gapB plasmid. Dr. Kari Koivuranta is acknowledged for providing the transketolase-deficient strain H2926. M.Sc. Ritva Verho is thanked for the strain H2493. Prof. Eckhard Boles is thanked for providing the GDH2 plasmid YEpMSP3-T. Dr. Marilyn Wiebe is acknowledged for helpful discussions and critical reading of the manuscript. Pirjo Tähtinen, Outi Könönen, and Merja Helanterä are thanked for excellent technical assistance. Helena Simolin and Marita Ikonen are thanked for the Dionex HPLC analysis.

The financial support from Danisco sweeteners and Tekes, the Finnish Funding Agency for Technology and Innovation (project 4007/96), and Finnish Academy (Centre of Excellence in White Biotechnology—Green Chemistry, project 118573) is gratefully acknowledged.

References

  1. Boles E, Lehnert W, Zimmermann FK (1993) The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Eur J Biochem 217:469–477CrossRefGoogle Scholar
  2. Boles E, Gohlmann HW, Zimmermann FK (1996) Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2, 6- bisphosphate. Mol Microbiol 20:65–76CrossRefGoogle Scholar
  3. Ciriacy M, Breitenbach I (1979) Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J Bacteriol 139:152–160Google Scholar
  4. Cleland WW (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 67:104–137CrossRefGoogle Scholar
  5. De Wulf P, Vandamme EJ (1997) Production of D-ribose by fermentation. Appl Microbiol Biotechnol 48:141–148CrossRefGoogle Scholar
  6. Fiaux J, Cakar ZP, Sonderegger M, Wüthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180CrossRefGoogle Scholar
  7. Fillinger S, Boschi-Muller S, Azza S, Dervyn E, Branlant G, Aymerich S (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275:14031–14037CrossRefGoogle Scholar
  8. Gietz RD, Sugino A (1988) New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534CrossRefGoogle Scholar
  9. Goffrini P, Wesolowski-Louvel M, Ferrero I (1991) A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol Gen Genet 228:401–409CrossRefGoogle Scholar
  10. Griesinger C, Otting G, Wüthrich K, Ernst RR (1988) Clean TOCSY for 1H spin system identification in macromolecules. J Am Chem Soc 110:7870–7872CrossRefGoogle Scholar
  11. Heux S, Cadiere A, Dequin S (2008) Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains. FEMS Yeast Res 8:217–224CrossRefGoogle Scholar
  12. Ishizuka H, Wako H, Kasumi T, Sasaki T (1989) Breeding of a mutant of Aureobasidium sp. with high erythritol production. J Ferment Bioeng 68:310–314CrossRefGoogle Scholar
  13. Kleijn RJ, van Winden WA, van Gulik WM, Heijnen JJ (2005) Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence. FEBS J 272:4970–4982CrossRefGoogle Scholar
  14. Maaheimo H, Fiaux J, Cakar ZP, Bailey JE, Sauer U, Szyperski T (2001) Central carbon metabolism of Saccharomyces cerevisiae explored by biosynthetic fractional 13C labeling of common amino acids. Eur J Biochem 268:2464–2479CrossRefGoogle Scholar
  15. Maitra PK (1971) Glucose and fructose metabolism in a phosphoglucoseisomeraseless mutant of Saccharomyces cerevisiae. J Bacteriol 107:759–769Google Scholar
  16. Mellor J, Dobson MJ, Roberts NA, Tuite MF, Emtage JS, White S, Lowe PA, Patel T, Kingsman AJ, Kingsman SM (1983) Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae. Gene 24:1–14CrossRefGoogle Scholar
  17. Povelainen M, Miasnikov AN (2006a) Production of D-arabitol by a metabolic engineered strain of Bacillus subtilis. Biotechnol J 1:214–219CrossRefGoogle Scholar
  18. Povelainen M, Miasnikov AN (2006b) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol 128:24–31CrossRefGoogle Scholar
  19. Randez-Gil F, Blasco A, Prieto JA, Sanz P (1995) DOGR1 and DOGR2: two genes from Saccharomyces cerevisiae that confer 2-deoxyglucose resistance when overexpressed. Yeast 11:1233–1240CrossRefGoogle Scholar
  20. Ruohonen L, Aalto MK, Keränen S (1995) Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. J Biotechnol 39:193–203CrossRefGoogle Scholar
  21. Sasajima K, Yoneda M (1989) Production of D-ribose by microorganisms. In: Vandamme EJ (ed) Biotechnology of vitamins, pigments and growth factors. Elsevier, New York, pp 167–197Google Scholar
  22. Sherman F, Fink G, Hicks JB (1983) Methods in yeast genetics. Cold Springs Harbor Laboratory, Cold Springs Harbor, NYGoogle Scholar
  23. Spencer JFT, Sallans HR (1956) Production of polyhydric alcohols by osmophilic yeasts. Can J Microbiol 2:72–79CrossRefGoogle Scholar
  24. Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem 232:433–448CrossRefGoogle Scholar
  25. Tarrio N, Becerra M, Cerdan ME, Gonzalez Siso MI (2006) Reoxidation of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Res 6:371–380CrossRefGoogle Scholar
  26. Teleman A, Richard P, Toivari M, Penttilä M (1999) Identification and quantitation of phosphorus metabolites in yeast neutral pH extracts by nuclear magnetic resonance spectroscopy. Anal Biochem 272:71–79CrossRefGoogle Scholar
  27. Toivari MH, Ruohonen L, Miasnikov AN, Richard P, Penttilä M (2007) Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols. Appl Environ Microbiol 73:5471–5476CrossRefGoogle Scholar
  28. Ugarova NN, Romay C, Garcia I, Pascual C (1986) Intracellular ATP in a glucosephosphate isomerase mutant of Saccharomyces cerevisiae. Folia Microbiol (Praha) 31:113–119CrossRefGoogle Scholar
  29. Verho R, Richard P, Jonson PH, Sundqvist L, Londesborough J, Penttilä M (2002) Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis. Biochemistry 41:13833–13838CrossRefGoogle Scholar
  30. Vinopal RT, Hillman JD, Schulman H, Reznikoff WS, Fraenkel DG (1975) New phosphoglucose isomerase mutants of Escherichia coli. J Bacteriol 122:1172–1174Google Scholar
  31. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Mervi H. Toivari
    • 1
  • Hannu Maaheimo
    • 1
  • Merja Penttilä
    • 1
  • Laura Ruohonen
    • 1
  1. 1.VTT Technical Research Centre of FinlandEspooFinland

Personalised recommendations