Applied Microbiology and Biotechnology

, Volume 85, Issue 6, pp 1869–1879 | Cite as

DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes

  • Christiane LiersEmail author
  • Caroline Bobeth
  • Marek Pecyna
  • René Ullrich
  • Martin Hofrichter
Biotechnologically Relevant Enzymes and Proteins


The jelly fungus Auricularia auricula-judae produced an enzyme with manganese-independent peroxidase activity during growth on beech wood (∼300 U l−1). The same enzymatic activity was detected and produced at larger scale in agitated cultures comprising of liquid, plant-based media (e.g. tomato juice suspensions) at levels up to 8,000 U l−1. Two pure peroxidase forms (A. auricula-judae peroxidase (AjP I and AjP II) could be obtained from respective culture liquids by three chromatographic steps. Spectroscopic and electrophoretic analyses of the purified proteins revealed their heme and peroxidase nature. The N-terminal amino acid sequence of AjP matched well with sequences of fungal enzymes known as “dye-decolorizing peroxidases”. Homology was found to the N-termini of peroxidases from Marasmius scorodonius (up to 86%), Thanatephorus cucumeris (60%), and Termitomyces albuminosus (60%). Both enzyme forms catalyzed not only the conversion of typical peroxidase substrates such as 2,6-dimethoxyphenol and 2,2′-azino-bis(3-ethylthiazoline-6-sulfonate) but also the decolorization of the high-redox potential dyes Reactive Blue 5 and Reactive Black 5, whereas manganese(II) ions (Mn2+) were not oxidized. Most remarkable, however, is the finding that both AjPs oxidized nonphenolic lignin model compounds (veratryl alcohol; adlerol, a nonphenolic β-O-4 lignin model dimer) at low pH (maximum activity at pH 1.4), which indicates a certain ligninolytic activity of dye-decolorizing peroxidases.


Dye-decolorizing peroxidases Jelly fungi White rot Nonphenolic β-O-4 lignin model compound Azo and anthraquinone dyes 



We thank Martin Kluge (Inge), Matthias Kinne (Konrad), and Elisabet Aranda for their useful comments and discussions as well as Ulrike Schneider and Monika Brandt for their technical assistance. The work was supported by the European Union (integrated project “Biorenew”) and the German Environmental Foundation (DBU, project 13225-32).


  1. Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11:169–218CrossRefGoogle Scholar
  2. Aitken MD, Irvine RL (1989) Stability testing of ligninase and Mn-peroxidase from Phanerochaete chrysosporium. Biotechnol Bioeng 34:1251–1260CrossRefGoogle Scholar
  3. Anh DH, Ullrich R, Benndorf D, Svatos A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485CrossRefGoogle Scholar
  4. Bohlin C, Persson P, Gorton L, Lundquist K, Jönsson LJ (2005) Product profiles in enzymic and non-enzymic oxidations of the lignin model compound erythro-1-(3, 4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1, 3-propanediol. J Mol Catal B: Enzym 35:100–107CrossRefGoogle Scholar
  5. Bollag JM, Sjoblad RD, Liu SY (1979) Characterization of an enzyme from Rhizoctonia praticola which polymerizes phenolic compounds. Can J Microbiol 25:229–233CrossRefGoogle Scholar
  6. Camarero S, Sarkar S, Ruiz-Duenas FJ, Martinez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330CrossRefGoogle Scholar
  7. Caramelo L, Martinez MJ, Martinez AT (1999) A search for ligninolytic peroxidases in the fungus Pleurotus eryngii involving α-keto-γ-thiomethylbutyric acid and lignin model dimers. Appl Environ Microbiol 65:916–922Google Scholar
  8. Chung N, Aust SD (1995) Inactivation of lignin peroxidase by hydrogen peroxide during the oxidation of phenols. Arch Biochem Biophys 316:851–855CrossRefGoogle Scholar
  9. Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzluf GA (eds) The Mycota, vol 3. Biochemistry and molecular biology, 2nd edn. Springer, Berlin, pp 249–273Google Scholar
  10. Eggert C, Temp U, Dean JF, Eriksson KE (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148CrossRefGoogle Scholar
  11. Faraco V, Piscitelli A, Sannia G, Giardina P (2007) Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microbiol Biotechnol 23:889–893CrossRefGoogle Scholar
  12. Gamauf C, Metz B, Seiboth B (2007) Degradation of plant cell wall polymers by fungi. In: Kubicek CP, Druzhinina IS (eds) The Mycota, vol 4. Environmental and microbial relationships, 2nd edn. Springer, Berlin, pp 325–339Google Scholar
  13. Gazarian IG, Lagrimini LM, George SJ, Thorneley RN (1996) Anionic tobacco peroxidase is active at extremely low pH: veratryl alcohol oxidation with a pH optimum of 1.8. Biochem J 320:369–372Google Scholar
  14. Gelpke MDS, Lee J, Gold MH (2002) Lignin peroxidase oxidation of veratryl alcohol: effects of the mutants H82A, Q222A, W171A, and F267L. Biochemistry 41:3498–3506CrossRefGoogle Scholar
  15. Gold MH, Kuwahara M, Chiu AA, Glenn JK (1984) Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234:353–362CrossRefGoogle Scholar
  16. Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers. Lignin, humic substances and coal, vol 1. Wiley-VCH, Weinheim, pp 129–180Google Scholar
  17. Hatakka A, Lundell TK, Tervilä-Wilo ALM, Brunow G (1991) Metabolism of non-phenolic β-O-4 lignin model compounds by the white-rot fungus Phlebia radiata. Appl Microbiol Biotechnol 36:270–277CrossRefGoogle Scholar
  18. Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998a) Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43–50CrossRefGoogle Scholar
  19. Heinfling A, Ruiz-Duenas FJ, Martinez MJ, Bergbauer M, Szewzyk U, Martinez AT (1998b) A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett 428:141–146CrossRefGoogle Scholar
  20. Heinzkill M, Bech L, Halkier T, Schneider P, Anke T (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae). Appl Environ Microbiol 64:1601–1606Google Scholar
  21. Hibbett DS (2006) A phylogenetic overview of the Agaricomycotina. Mycologia 98:917–925CrossRefGoogle Scholar
  22. Hofrichter M, Ziegenhagen D, Vares T, Friedrich M, Jager MG, Fritsche W, Hatakka A (1998) Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide. FEBS Lett 434:362–366CrossRefGoogle Scholar
  23. Hofrichter M, Lundell T, Hatakka A (2001) Conversion of milled pine wood by manganese peroxidase from Phlebia radiata. Appl Environ Microbiol 67:4588–4593CrossRefGoogle Scholar
  24. Hushpulian DM, Poloznikov AA, Savitski PA, Rozhkova AM, Chubar TA, Fechina VA, Orlova MA, Tishkov VI, Gazaryan IG, Lagrimini LM (2007) Glutamic acid-141: a heme ‘bodyguard’ in anionic tobacco peroxidase. Biol Chem 388:373–380CrossRefGoogle Scholar
  25. Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035Google Scholar
  26. Kirk TK, Schulz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 177:277–285CrossRefGoogle Scholar
  27. Kirk TK, Tien M, Kersten PJ, Mozuch MD, Kalyanaraman B (1986) Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol-β-aryl ether substructure of lignin. Biochem J 236:279–287Google Scholar
  28. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  29. Liers C, Ullrich R, Steffen KT, Hatakka A, Hofrichter M (2006) Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha. Appl Microbiol Biotechnol 69:573–579CrossRefGoogle Scholar
  30. Lundell T, Hatakka A (1994) Participation of Mn(II) in the catalysis of laccase, manganese peroxidase and lignin peroxidase from Phlebia radiata. FEBS Lett 348:291–296CrossRefGoogle Scholar
  31. Lundell TK, Kileläinen IA, Brunow G, Schoemaker HE, Hatakka A (1992) Degradation of macromolecular lignin models by lignin peroxidase from Phlebia radiata and catalytic properties of the enzyme. Paper presented at the 5th International Conference on Biotechnology in the Pulp and Paper Industry. Kyoto, JapanGoogle Scholar
  32. Lundell T, Wever R, Floris R, Harvey P, Hatakka A, Brunow G, Schoemaker H (1993) Lignin peroxidase L3 from Phlebia radiata. Pre-steady-state and steady-state studies with veratryl alcohol and a non-phenolic lignin model compound 1-(3, 4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1, 3-diol. Eur J Biochem 211:391–402CrossRefGoogle Scholar
  33. Martinez MJ, Ruiz-Duenas FJ, Guillen F, Martinez AT (1996) Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432CrossRefGoogle Scholar
  34. McEldoon JP, Pokora AR, Dordick JS (1995) Lignin peroxidase-type activity of soybean peroxidase. Enzyme Microb Technol 17:359–365CrossRefGoogle Scholar
  35. Mester T, Field JA (1998) Characterization of a novel manganese peroxidase–lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417CrossRefGoogle Scholar
  36. Morgenstern I, Klopman S, Hibbett DS (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J Mol Evol 66:243–257CrossRefGoogle Scholar
  37. Pecyna M, Ullrich R, Bittner B, Clemens A, Schubert R, Scheibner K, Hofrichter M (2009) Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol. doi: 10.1007/s00253-009-2000-1: Google Scholar
  38. Poulos TL, Edwards SL, Wariishi H, Gold MH (1993) Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem 268:4429–4440Google Scholar
  39. Robene-Soustrade I, Lung-Escarmant B, Bono JJ, Taris B (1992) Identification and partial characterization of an extracellular manganese-dependent peroxidase in Armillaria ostoyae and Armillaria mellea. Eur J For Pathol 22:227–236CrossRefGoogle Scholar
  40. Scheibner M, Hulsdau B, Zelena K, Nimtz M, de Boer L, Berger RG, Zorn H (2008) Novel peroxidases of Marasmius scorodonius degrade β-carotene. Appl Microbiol Biotechnol 77:1241–1250CrossRefGoogle Scholar
  41. Schmidt O (2006) Wood and tree fungi. Biology, damage, protection, and use. Springer, BerlinGoogle Scholar
  42. Schoemaker HE, Lundell TK, Hatakka A, Piontek K (1994) The oxidation of veratryl alcohol, dimeric lignin models and lignin by lignin peroxidase: redox cycle revisited. FEMS Microbiol Rev 13:321–332CrossRefGoogle Scholar
  43. Shimokawa T, Hirai M, Shoda M, Sugano Y (2008) Efficient dye decolorization and production of dye decolorizing enzymes by the basidiomycete Thanatephorus cucumeris Dec 1 in a liquid and solid hybrid culture. J Biosci Bioeng 106:481–487CrossRefGoogle Scholar
  44. Shimokawa T, Shoda M, Sugano Y (2009) Purification and characterization of two DyP isozymes from Thanatephorus cucumeris Dec 1 specifically expressed in an air-membrane surface bioreactor. J Biosci Bioeng 107:113–115CrossRefGoogle Scholar
  45. Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403CrossRefGoogle Scholar
  46. Sugano Y, Sasaki K, Shoda M (1999) cDNA cloning and genetic analysis of a novel decolorizing enzyme, peroxidase gene dyp from Geotrichum candidum Dec 1. J Biosci Bioeng 87:411–417CrossRefGoogle Scholar
  47. Sugano Y, Nakano R, Sasaki K, Shoda M (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec 1. Appl Environ Microbiol 66:1754–1758CrossRefGoogle Scholar
  48. Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658CrossRefGoogle Scholar
  49. Sugano Y, Matsushima Y, Tsuchiya K, Aoki H, Hirai M, Shoda M (2009) Degradation pathway of an anthraquinone dye catalyzed by a unique peroxidase DyP from Thanatephorus cucumeris Dec 1. Biodegradation 20:433–440CrossRefGoogle Scholar
  50. Ten Have R, Hartmans S, Teunissen PJ, Field JA (1998) Purification and characterization of two lignin peroxidase isozymes produced by Bjerkandera sp. strain BOS55. FEBS Lett 422:391–394CrossRefGoogle Scholar
  51. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249CrossRefGoogle Scholar
  52. Tuisel H, Sinclair R, Bumpus JA, Ashbaugh W, Brock BJ, Aust SD (1990) Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys 279:158–166CrossRefGoogle Scholar
  53. Ullrich R, Nuske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581CrossRefGoogle Scholar
  54. Ullrich R, Liers C, Schimpke S, Hofrichter M (2009) Purification of homogeneous forms of fungal peroxygenase. J Biotechnol. doi: 10.1002/biot.200900076: Google Scholar
  55. Ward G, Hadar Y, Bilkis I, Dosoretz CG (2003) Mechanistic features of lignin peroxidase-catalyzed oxidation of substituted phenols and 1, 2-dimethoxyarenes. J Biol Chem 278:39726–39734CrossRefGoogle Scholar
  56. Weiß M, Oberwinkler F (2001) Phylogenetic relationships in Auriculariales and related groups—hypotheses derived from nuclear ribosomal DNA sequences. Mycol Res 105:403–415CrossRefGoogle Scholar
  57. Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393CrossRefGoogle Scholar
  58. Zubieta C, Joseph R, Krishna SS, McMullan D, Kapoor M, Axelrod HL, Miller MD, Abdubek P, Acosta C, Astakhova T, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, Morse AT, Murphy KD, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife CL, Schimmel P, Trout CV, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA (2007a) Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins 69:234–243CrossRefGoogle Scholar
  59. Zubieta C, Krishna SS, Kapoor M, Kozbial P, McMullan D, Axelrod HL, Miller MD, Abdubek P, Ambing E, Astakhova T, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Hampton E, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kumar A, Marciano D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife CL, Schimmel P, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA (2007b) Crystal structures of two novel dye-decolorizing peroxidases reveal a β-barrel fold with a conserved heme-binding motif. Proteins 69:223–233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Christiane Liers
    • 1
    Email author
  • Caroline Bobeth
    • 1
  • Marek Pecyna
    • 1
  • René Ullrich
    • 1
  • Martin Hofrichter
    • 1
  1. 1.Unit of Environmental BiotechnologyInternational Graduate School of ZittauZittauGermany

Personalised recommendations