Advertisement

Two-phase partitioning bioreactors in environmental biotechnology

  • Guillermo Quijano
  • María Hernandez
  • Frédéric Thalasso
  • Raúl MuñozEmail author
  • Santiago Villaverde
Mini-Review

Abstract

Two-phase partitioning bioreactors (TPPBs) in environmental biotechnology are based on the addition of a non-aqueous phase (NAP) into a biological process in order to overcome both mass-transfer limitations from the gas to aqueous phase and pollutant-mediated inhibitions. Despite constituting a robust and reliable technology in terms of pollutant biodegradation rates and process stability in wastewater, soil, and gas treatment applications, this superior performance only applies for a restricted number of pollutants or contamination events. Severe limitations such as high energy requirements, high costs of some NAPs, foaming, or pollutant sequestration challenge the full-scale application of this technology. The introduction of solid NAPs into this research field has opened a promising pathway for the future development of TPPBs. Finally, this work reviews fundamental aspects of NAP selection and mass transfer and identifies the niches for future research: low energy-demand bioreactor designs, experimental determination of partial mass transfers, and solid NAP tailoring.

Keywords

Mass transfer Soil treatment Toxic pollutants Two-phase partitioning bioreactors Volatile organic contaminants 

Notes

Acknowledgments

The authors faithfully thank the financial support received from the Mexican Council of Science and Technology (Guillermo Quijano grant #164283). The Spanish Ministry of Education and Science (RYC-2007-01667, PPQ2006-08230, CONSOLIDER- CSD 2007-00055) and the Regional Government of Castilla y Leon (Ref. GR76) are also gratefully acknowledged. Katrina Penman is gratefully acknowledged for her grammatical corrections.

References

  1. Aguila-Hernandez J, Trejo A, García-Flores BE (2007) Surface tension and foam behavior of aqueous solutions of blends of three alkanolamines, as a function of temperature. Colloids Surf A 308:33–46CrossRefGoogle Scholar
  2. Alagapan G, Cowan RM (2004) Effect of temperature and dissolved oxygen on the growth kinetics of Pseudomonas putida F1 growing on benzene and toluene. Chemosphere 54:1255–1265CrossRefGoogle Scholar
  3. Alper E, Wichtendahl B, Deckwer W (1980) Gas-absorption mechanism in catalytic slurry reactors. Chem Eng Sci 35:217–222CrossRefGoogle Scholar
  4. Amsden BG, Bochanysz J, Daugulis AJ (2003) Degradation of xenobiotics in a partitioning bioreactor in which the partitioning phase is a polymer. Biotechnol Bioeng 84:399–405CrossRefGoogle Scholar
  5. Arriaga S, Muñoz R, Hernandez S, Guieysse B, Revah S (2006) Gaseous hexane biodegradation by fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors. Environ Sci Technol 40:2390–2395CrossRefGoogle Scholar
  6. Ascon-Cabrera MA, Lebeault JM (1993) Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system. Appl Environ Microbiol 59:1136–1141Google Scholar
  7. Ascon-Cabrera MA, Lebeault JM (1995) Interfacial area effects of a biphasic aqueous/organic system of growth kinetic of xenobiotic-degrading microorganisms. Appl Microbiol Biotechnol 43:1136–1141CrossRefGoogle Scholar
  8. Bailon L, Nikolausz M, Kastner M, Veiga MC, Kennes C (2009) Removal of dichloromethane form waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters. Water Res 43:11–20CrossRefGoogle Scholar
  9. Boudreau NG, Daugulis AJ (2006) Transient Performance of Two phase partitioning bioreactor treating a toluene contaminated gas stream. Biotechnol Bioeng 94:448–457CrossRefGoogle Scholar
  10. Bruce LJ, Daugulis AJ (1991) Solvent selection strategies for extractive biocatalysis. Biotechnol Prog 7:116–124CrossRefGoogle Scholar
  11. Bruining WJ, Joosten GEH, Beenackers AACM, Hofman H (1986) Enhancement of gas-liquid mass transfer by a dispersed second liquid phase. Chem Eng Sci 41:1873–1877CrossRefGoogle Scholar
  12. Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338CrossRefGoogle Scholar
  13. Cesario MT, Beeftink HH, Tramper J (1992) Biological treatment of waste gases containing poorly-water soluble compounds. In: Dragt AJ, van Ham J (eds) Biotechniques for air pollution abatements and odour control policies. Elsevier Science Publishers, Amsterdam, pp 135–140Google Scholar
  14. Cesario MT, Turtoi M, Sewalt SFM, Beeftink HH, Tramper J (1996) Enhancement of the gas-to-water ethene transfer coefficient by a dispersed water-immiscible solvent: effect of the cells. Appl Microbiol Biotechnol 46:497–502CrossRefGoogle Scholar
  15. Cesario MT, Beverloo WA, Tramper J, Beeftink HH (1997a) Enhancement of gas-liquid mass transfer rate of apolar pollutants in the biological waste gas treatment by a dispersed organic solvent. Enzyme Microb Tech 21:578–588CrossRefGoogle Scholar
  16. Cesario MT, Beverloo WA, Tramper J, Beeftink HH (1997b) Enhancement of gas-liquid mass transfer rate of apolar pollutants in the biological waste gas treatment by a dispersed organic solvent. Enzyme Microb Technol 21:578–588CrossRefGoogle Scholar
  17. Cesario MT, Brandsma JB, Boon MA, Tramper J, Beeftink HH (1998) Ethene removal from gas by recycling a water-immiscible solvent through a packed absorber and a bioreactor. J Biotech 62:105–118CrossRefGoogle Scholar
  18. Clarke KG, Correia LDC (2008) Oxygen transfer in hydrocarbon-aqueous dispersions and its applicability to alkane bioprocesses: A review. Biochem Eng J 39:405–429CrossRefGoogle Scholar
  19. Clarke KG, Williams PC, Smit MS, Harrison STL (2006) Enhancement and repression of the volumetric oxygen transfer coefficient through hydrocarbon addition and its influence on oxygen transfer rate in stirred tank bioreactors. Biochem Eng J 28:237–242CrossRefGoogle Scholar
  20. Collins LD, Daugulis AJ (1997) Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors. Biotechnol Bioeng 55:155–162CrossRefGoogle Scholar
  21. Collins LD, Daugulis AJ (1999a) Benzene/toluene/p-xylene degradation. Part II. Effect of substrate interactions and feeding strategies in toluene/benzene and toluene/p-xylene fermentations in a partitioning bioreactor. Appl Microbiol Biotechnol 52:360–365CrossRefGoogle Scholar
  22. Collins LD, Daugulis AJ (1999b) Simultaneous biodegradation of benzene, toluene, and p-xylene in a two-phase partitioning bioreactor: concept demonstration and practical application. Biotechnol Prog 15:74–80CrossRefGoogle Scholar
  23. Cordova-Rosa SM, Dams RI, Cordova-Rosa EV, Radetski MR, Correa AXR, Radetski CM (2009) Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant. J Hazard Mater 164:61–66CrossRefGoogle Scholar
  24. Cruickshank SM, Daugulis AJ, McLellan PJ (2000) Dynamic modeling and optimal fed-batch feeding strategies for a two-phase partitioning bioreactor. Biotechnol Bioeng 67:224–233CrossRefGoogle Scholar
  25. Daugulis AJ (1997) Partitioning bioreactors. Curr Opin Biotechnol 8:169–174CrossRefGoogle Scholar
  26. Daugulis AJ (2001) Two-phase partitioning bioreactors: a new technology platform for destroying xenobiotics. Trends Biotechnol 19:457–462CrossRefGoogle Scholar
  27. Daugulis AJ, Boudreau NG (2003) Removal and destruction of high concentrations of gaseous toluene in a two- phase partitioning bioreactor by Alcaligenes xylosoxidans. Biotechnol Lett 25:1421–1424CrossRefGoogle Scholar
  28. Daugulis AJ, Boudreau NG (2008) Solid -liquid two phase partitioning bioreactors for the treatment of gas-phase volatile organic carbons by a microbial consortium. Biotechnol Lett 30:1583–1587CrossRefGoogle Scholar
  29. Daugulis AJ, Janikowski TB (2002) Scale-up performance of a partitioning bioreactor for the degradation of polyaromatic hydrocarbons by Sphingomonas aromaticivorans. Biotechnol Lett 24:591–594CrossRefGoogle Scholar
  30. Daugulis AJ, Amsden B, Bochanysz J, Kayssi A (2003) Delivery of benzene to Alcaligenes xylosoxidans by solid polymers in a two-phase partitioning bioreactor. Biotechnol Lett 25:1203–1207CrossRefGoogle Scholar
  31. Davidson CT, Daugulis AJ (2003a) The treatment of gaseous benzene by two-phase partitioning bioreactors: a high performance alternative to the use of biofilters. Appl Microbiol Biotechnol 62:297–301CrossRefGoogle Scholar
  32. Davidson CT, Daugulis AJ (2003b) Addressing biofilter limitations: A two phase partitioning bioreactor process for the treatment of benzene and toluene contaminated gas streams. Biodegradation 14:415–421CrossRefGoogle Scholar
  33. Deziel E, Comeau Y, Villemur R (1999) Two-liquid-phase bioreactors for enhanced biodegradation of hydrophobic/toxic compounds. Biodegradation 10:219–233CrossRefGoogle Scholar
  34. Dumont E, Delmas H (2003) Mass transfer enhancement of gas absorption in oil-in-water systems: a review. Chem Eng Process 42:419–438CrossRefGoogle Scholar
  35. Dumont E, Andres Y, Le cloirec P (2005) Enhancement of oxygen transfer in bioprocesses by the use of an organic phase: Effect of silicone oil on volumetric mass transfer coefficient of oxygen (k L a). In: Kennes C, Veiga MC (eds) Proceedings of the international congress biotechniques for air pollution control. pp 163–173. A Coruña, SpainGoogle Scholar
  36. Dumont E, Andres Y, Le Cloirec P (2006a) Mass transfer coefficients of styrene and oxygen into silicone oil emulsions in a bubble reactor. Chem Eng Sci 61:5612–5619CrossRefGoogle Scholar
  37. Dumont E, Andres Y, Le Cloirec P (2006b) Effect of organic solvents on oxygen mass transfer in multiphase systems: application to bioreactors in environmental protection. Biochem Eng J 30:245–252CrossRefGoogle Scholar
  38. Fazaelipoor MH (2007) A model for treating air streams in a continuous two liquid phase stirred tank bioreactor. J Hazard Mater 148:453–458CrossRefGoogle Scholar
  39. Fazaelipoor MH, Shojaosadati SA (2002) The effect of silicone oil on biofiltration of hydrophobic compounds. Environ Prog 21:221–224CrossRefGoogle Scholar
  40. Galindo E, Pacek AW, Nienow AW (2000) Study of drop and bubble sizes in a simulated mycelial fermentation broth of up to four phases. Biotechnol Bioeng 69:213–221CrossRefGoogle Scholar
  41. Gardin H, Lebeault JM, Pauss A (1999) Biodegradation of xylene and butyl acetate using an aqueous-silicon oil two-phase system. Biodegradation 10:193–200CrossRefGoogle Scholar
  42. Guieysse B (2001) Inovative bioreactors for the degradation of polycyclic aromatic hydrocarbons. PhD Thesis. Lund UniversityGoogle Scholar
  43. Guieysse B, Viklund G (2005) Sequential UV-biological degradation of polycyclic aromatic hydrocarbons in two-phases partitioning bioreactors. Chemosphere 59:369–376CrossRefGoogle Scholar
  44. Guieysse B, Cirne MDTG, Mattiasson B (2001) Microbial degradation of phenanthrene and pyrene in a two-liquid phase-partitioning bioreactor. Appl Microbiol Biotechnol 56:796–802CrossRefGoogle Scholar
  45. Guieysse B, Autem Y, Soares A (2005) Biodegradation of phenol at low temperature using two-phase partitioning bioreactors. Water Sci Technol 52:97–105CrossRefGoogle Scholar
  46. Hamed TA, Bayraktar E, Mehmetoglu U, Mehmetoglu T (2004) The biodegradation of benzene, toluene and phenol in a two-phase system. Biochem Eng J 19:137–146CrossRefGoogle Scholar
  47. Hejazi RF, Husain T (2004) Landfarm performance under arid conditions. 1. Conceptual framework. Environ Sci Technol 38:2449–2456CrossRefGoogle Scholar
  48. Ho CS, Ju LK, Baddour RF (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnol Bioeng 36:1110–1118CrossRefGoogle Scholar
  49. Janikowski TB, Velicogna D, Punt M, Daugulis AJ (2002) Use of a two-phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp. Appl Microbiol Biotechnol 59:368–376CrossRefGoogle Scholar
  50. Jia S, Li P, Park YS, Okabe M (1996) Enhanced oxygen transfer in tower bioreactor on addition of liquid hydrocarbons. J Ferment Bioeng 82:191–193CrossRefGoogle Scholar
  51. Jorgensen A, Giessing AMB, Rasmussen LJ, Andersen O (2008) Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes. Mar Environ Res 65:171–186CrossRefGoogle Scholar
  52. Ju LK, Ho CS (1989) Oxygen diffusion coefficient and solubility in n-hexadecane. Biotechnol Bioeng 34:1221–1224CrossRefGoogle Scholar
  53. Kars R, Best R, Drinkenburg A (1979) Sorption of propane in slurries of active carbon in water. Chem Eng Jour 17:201–210Google Scholar
  54. Kim IS, Park JS, Kim KW (2001) Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl Geochem 16:1419–1428CrossRefGoogle Scholar
  55. Kohler A, Schuttoff M, Bryniok D, Knackmuss HJ (1994) Enhanced biodegradation of phenanthrene in a biphasic culture system. Biodegradation 5:93–103CrossRefGoogle Scholar
  56. Lei L, Suidan MT, Khodadoust AP, Tabak HH (2004) Assessing the bioavailability of PAHs in field-contaminated sediment using XAD-2 assisted desorption. Environ Sci Technol 38:1786–1793CrossRefGoogle Scholar
  57. Littlejohns JV, Daugulis AJ (2007) Oxygen transfer in a gas–liquid system containing solids of varying oxygen affinity. Chem Eng J 129:67–74CrossRefGoogle Scholar
  58. Littlejohns JV, Daugulis AJ (2008) Response of a solid-liquid two-phase partitioning bioreactor to transient BTEX loadings. Chemosphere 73:1453–1460CrossRefGoogle Scholar
  59. Littlejohns JV, Daugulis AJ (2009) A two-phase partitioning airlift bioreactor for the treatment of BTEX contaminated gases. Biotechnol Bioeng 103:1077–1086CrossRefGoogle Scholar
  60. MacLeod CT, Daugulis AJ (2003) Biodegradation of polycyclic aromatic hydrocarbons in a two-phase partitioning bioreactor in the presence of a bioavailable solvent. Appl Microbiol Biotechnol 62:291–296CrossRefGoogle Scholar
  61. MacLeod CT, Daugulis AJ (2005) Interfacial effects in a two-phase partitioning bioreactor: degradation of polycyclic aromatic hydrocarbons (PAHs) by a hydrophobic Mycobacterium. Process Biochem 40:1799–1805CrossRefGoogle Scholar
  62. Mahanty B, Pakshirajan K, Dasu VV (2008) Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system. Bioresour Technol 99:2694–2698CrossRefGoogle Scholar
  63. Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19:525–538CrossRefGoogle Scholar
  64. Mancera-Lopez ME, Esparza-Garcia F, Chavez-Gomez B, Rodriguez-Vazquez R, Saucedo-Castañeda G, Barrera-Cortes J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int Biodeterior Biodegrad 61:151–160CrossRefGoogle Scholar
  65. Marcoux J, Deziel E, Villemur R, Lepine F, Bisaillon JG, Beaudet R (2000) Optimization of high-molecular-weight polycyclic aromatic hydrocarbons' degradation in a two-liquid-phase bioreactor. J Appl Microbiol 88:655–662CrossRefGoogle Scholar
  66. Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:2885–2889Google Scholar
  67. Mohan SV, Prasanna D, Reddy BP, Sarma PN (2008) Ex situ bioremediation of pyrene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: Influence of bioaugmentation. Int Biodeterior Biodegrad 62:162–169CrossRefGoogle Scholar
  68. Mohan SV, Reddy BP, Sarma PN (2009) Ex situ slurry phase bioremediation of chrysene contaminated soil with the function of metabolic function: process evaluation by data enveloping analysis (DEA) and Taguchi design of experimental methodology (DOE). Bioresour Technol 100:164–172CrossRefGoogle Scholar
  69. Morrish JLE, Daugulis AJ (2008) Improved reactor performance and operability in the biotransformation of carveol to carvone using a solid–liquid two-phase partitioning bioreactor. Biotechnol Bioeng 101:946–956CrossRefGoogle Scholar
  70. Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267Google Scholar
  71. Muñoz R, Rolvering B, Guieysse B, Mattiasson B (2005) Aerobic phenanthrene biodegradation in a two-phase partitioning bioreactor. Water Sci Technol 52:265–271Google Scholar
  72. Muñoz R, Arriaga S, Hernandez S, Guieysse B, Revah S (2006) Enhanced hexane biodegradation in a two phase partitioning bioreactor: Overcoming pollutant transport limitations. Process Biochem 41:1614–1619CrossRefGoogle Scholar
  73. Muñoz R, Villaverde S, Guieysse B, Revah S (2007a) Two partitioning bioreactors for treatment of volatile organic compounds. Biotechnol Adv 25:410–422CrossRefGoogle Scholar
  74. Muñoz R, Diaz LF, Bordel S, Villaverde S (2007b) Inhibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures. Chemosphere 68:244–252CrossRefGoogle Scholar
  75. Muñoz R, Chambaud M, Bordel S, Villaverde S (2008) A systematic selection of the non-aqueous phase in a bacterial two liquid phase bioreactor treating α-pinene. Appl Microbiol Biotechnol 79:33–41CrossRefGoogle Scholar
  76. Muñoz R, Hernández M, Segura A, Gouveia J, Rojas A, Ramos JL, Villaverde S (2009) Continuous cultures of Pseudomonas putida mt-2 overcome catabolic function loss under real case operating conditions. Appl Microbiol Biotechnol 83:189–198CrossRefGoogle Scholar
  77. Nielsen DR, Daugulis AJ, McLellan PJ (2003) A novel method of simulating oxygen mass transfer in two-phase partitioning bioreactors. Biotechnol Bioeng 83:735–742CrossRefGoogle Scholar
  78. Nielsen DR, Daugulis AJ, McLellan PJ (2005) Transient performance of a two-phase partitioning bioscrubber treating a benzene contaminated gas streams. Environ Sci Technol 39:8971–8977CrossRefGoogle Scholar
  79. Nielsen DR, Sask KN, McLellan PJ, Daugulis AJ (2006) Benzene vapor treatment using a two phase partitioning bioscrubber: an improved steady-state protocol to enhance long-term operation. Bioprocess Biosyst Eng 29:229–240CrossRefGoogle Scholar
  80. Nielsen DR, Daugulis AJ, McLellan PJ (2007a) Dynamic simulation of benzene vapor treatment by a two-phase partitioning bioscrubber Part I: Model development, parameter estimation, and parametric sensitivity. Biochem Eng J 36:239–249CrossRefGoogle Scholar
  81. Nielsen DR, Daugulis AJ, McLellan PJ (2007b) Dynamic simulation of benzene vapor treatment by a two-phase partitioning bioscrubber Part II: Model calibration, validation, and predictions. Biochem Eng J 36:250–261CrossRefGoogle Scholar
  82. Ortega-Calvo JJ, Birman I, Alexander M (1995) Effect of varying the rate of partitioning of phenanthrene in nonaqueous-phase liquids on biodegradation in soil slurries. Environ Sci Technol 29:2222–2225CrossRefGoogle Scholar
  83. Peeva L, Yona SB, Merchuk JC (2004) Mass transfer coefficients of decane to emulsions in a bubble column reactor. Chem Eng Sci 56:5201–5206Google Scholar
  84. Poppe W, Schippert E (1992) Das KCH-biosolv-ver-fahren in kombination mit einem biowascher herkomlicher art-eine verfahrensentwicklung zur abluftreinigung fur wasserlosliche und schwer wasserlosliche schadstoffe. In: Dragt AJ, van Ham J (eds) Biotechniques for air pollution abatements and odour control policies. Elsevier Science Publishers, Amsterdam, pp 71–76Google Scholar
  85. Prpich GP, Daugulis AJ (2004) Polymer development for enhanced delivery of phenol in a solid-liquid two-phase partitioning bioreactor. Biotechnol Prog 20:1725–1732CrossRefGoogle Scholar
  86. Prpich GP, Adams RL, Daugulis AJ (2006) Ex situ bioremediation of phenol contaminated soil using polymer beads. Appl Microbiol Biotechnol 28:2027–2031Google Scholar
  87. Pulido-Mayoral N, Galindo E (2004) Phases dispersion and oxygen transfer in a simulated fermentation broth containing castor oil and proteins. Biotechnol Prog 20:1608–1613CrossRefGoogle Scholar
  88. Quijano G, Revah S, Gutierrez-Rojas M, Flores-Cotera LB, Thalasso F (2009a) Oxygen transfer in three-phase airlift and stirred tank reactors using silicone oil as transfer vector. Process Biochem 44:619–624CrossRefGoogle Scholar
  89. Quijano G, Rocha-Rios J, Hernandez M, Villaverde S, Revah S, Muñoz R, Thalasso F (2009b) Determining the effect of solid and liquid vectors on the gaseous interfacial area in two-phase partitioning bioreactors. J Hazard Mater (submitted for publication)Google Scholar
  90. Quijano G, Hernandez M, Villaverde S, Thalasso F, Muñoz R (2009c) A step-forward in the characterization and potential applications of solid and liquid oxygen transfer vectors. Appl Microbiol Biotechnol (in press)Google Scholar
  91. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRefGoogle Scholar
  92. Reardon KF, Mosteller DC, Rogers JDB (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400CrossRefGoogle Scholar
  93. Rehmann L, Daugulis AJ (2006) Biphenyl degradation kinetics by Burkholderia xenovorans LB400 in two-phase partitioning bioreactors. Chemosphere 63:972–979CrossRefGoogle Scholar
  94. Rehmann L, Daugulis AJ (2008) Bioavailability of PCBs in biphasic bioreactors. Biochem Eng J 38:219–225CrossRefGoogle Scholar
  95. Rehmann L, Sun B, Daugulis AJ (2007) Polymer selection for biphenyl degradation in a solid-liquid two-phase partitioning bioreactor. Biotechnol Prog 23:814–819Google Scholar
  96. Rehmann L, Prpich GP, Daugulis AJ (2008) Remediation of PAH contaminated soils: application of a solid–liquid two-phase partitioning bioreactor. Chemosphere 73:798–804CrossRefGoogle Scholar
  97. Rocha-Rios J, Bordel S, Hernández S, Revah S (2009) Methane degradation in two-phase partition bioreactors. Chem Eng J 152:289–292CrossRefGoogle Scholar
  98. Rols JL, Condoret JS, Fonade C, Goma G (1990) Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol Bioeng 35:427–435CrossRefGoogle Scholar
  99. Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. http://www.mpch-mainz.mpg.de/∼sander/res/henry.html
  100. Sikkema J, De Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222Google Scholar
  101. Song JH, Kinney KA (2005) Microbial response and elimination capaticy in biofilters subjected to high toluene loadings. Appl Microbial Biotechnol 68:554–559CrossRefGoogle Scholar
  102. Toft AM, Hurley MD, Wallington TJ, Andersen MPS, Nielsen OJ (2006) Atmospheric chemistry of C4F9O(CH2)3OC4F9 and CF3CFHCF2O(CH2)3OCF3CFHCF2: lifetimes, degradation products, and environmental impact. Chem Phys Lett 427:41–46CrossRefGoogle Scholar
  103. Tomei MC, Annesini MC, Rita S, Daugulis AJ (2008) Biodegradation of 4-nitrophenol in a two-phase sequencing batch reactor: concept demonstration, kinetics and modeling. Appl Microbiol Biotechnol 80:1105–1112CrossRefGoogle Scholar
  104. Vandermeer KD, Daugulis AJ (2007) Enhanced degradation of a mixture of polycyclic aromatic hydrocarbons by a defined microbial consortium in a two-phase partitioning bioreactor. Biodegradation 18:211–221CrossRefGoogle Scholar
  105. van Groenestijn JW, Lake ME (1999) Elimination of alkanes from off-gases using biotrickling filters containing two liquid phases. Environ Prog 18:151–155CrossRefGoogle Scholar
  106. Villemur R, Deziel E, Benachenhou A, Marcoux J, Gauthier E, Lepine F, Beaudet R, Comeau Y (2000) Two-liquid-phase slurry bioreactors to enhance the degradation of high-molecular-weight polycyclic aromatic hydrocarbons in soil. Biotechnol prog 16:966–972CrossRefGoogle Scholar
  107. Woo SH, Lee MW, Park JM (2004) Biodegradation of phenanthrene in soil-slurry systems with different mass transfer regimes and soil contents. J Biotechnol 110:235–250CrossRefGoogle Scholar
  108. Yeom SH, Daugulis AJ (1999) Benzene degradation in a two-phase partitioning bioreactor by Alcaligenes xylosoxidans Y234. Proc Biochem 36:765–772CrossRefGoogle Scholar
  109. Yeom SH, Daugulis AJ (2000) Development of a novel bioreactor system for treatment of gaseous benzene. Biotechnol Bioeng 72:156–165CrossRefGoogle Scholar
  110. Yeom SH, Daugulis AJ (2001a) Benzene degradation in a two-phase partitioning bioreactor by Alcaligenes xylosoxidans Y234. Proc Biochem 36:765–772CrossRefGoogle Scholar
  111. Yeom SH, Daugulis AJ (2001b) A two-phase partitioning bioreactor system for treating benzene-contaminated soil. Biotechnol Lett 23:467–473CrossRefGoogle Scholar
  112. Yeom SH, Dalm MCF, Daugulis AJ (2000) Tretament of hight concentration gaseous benzene streams using a novel bioreactor system. Biotechnol Lett 22:1747–1751CrossRefGoogle Scholar
  113. Zilouei H, Guieysse B, Mattiasson B (2008) Two-phase partitioning bioreactor for the biodegradation of high concentrations of pentachlorophenol using Sphingobium chlorophenolicum DSM 8671. Chemosphere 72:1788–1794CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Guillermo Quijano
    • 1
    • 2
  • María Hernandez
    • 1
  • Frédéric Thalasso
    • 2
  • Raúl Muñoz
    • 1
    Email author
  • Santiago Villaverde
    • 1
  1. 1.Departmento de Ingeniería Química y Tecnología del Medio AmbienteUniversidad de ValladolidValladolidSpain
  2. 2.Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de EstudiosAvanzados del IPN (Cinvestav), ApdoMexicoMexico

Personalised recommendations