Applied Microbiology and Biotechnology

, Volume 84, Issue 6, pp 1045–1052 | Cite as

Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae

  • Minetaka Sugiyama
  • Kazuo Yamagishi
  • Yeon-Hee Kim
  • Yoshinobu Kaneko
  • Masafumi Nishizawa
  • Satoshi HarashimaEmail author


A fundamental issue in biotechnology is how to breed useful strains of microorganisms for efficient production of valuable biomaterials. On-going and more recent developments in gene manipulation technologies and chromosomal and genomic modifications in particular have facilitated important contributions in this area. “Chromosome manipulation technology” as an outgrowth of “gene manipulation technology” may provide opportunities for creating novel strains of organisms with a variety of genomic constitutions. A simple and rapid chromosome splitting technology called “PCR-mediated chromosome splitting” (PCS) that we recently developed has made it possible to manipulate chromosomes and genomes on a large scale in an industrially important microorganism, Saccharomyces cerevisiae. This paper focuses on recent advances in molecular methods for altering chromosomes and genome in S. cerevisiae featuring chromosome splitting technology. These advances in introducing large-scale genomic modifications are expected to accelerate the breeding of novel strains for biotechnological purposes, and to reveal functions of presently uncharacterized chromosomal regions in S. cerevisiae and other organisms.


Genome engineering Chromosome manipulation Genome reconstruction Saccharomyces cerevisiae 


  1. Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568CrossRefGoogle Scholar
  2. Giaever G, Chu AM, Ni L et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391CrossRefGoogle Scholar
  3. Giga-Hama Y, Tohda H, Takegawa K, Kumagai H (2007) Schizosaccharomyces pombe minimum genome factory. Biotechnol Appl Biochem 46:147–155CrossRefGoogle Scholar
  4. Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524CrossRefGoogle Scholar
  5. Hirashima K, Iwaki T, Takegawa K, Giga-Hama Y, Tohda H (2006) A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast. Nucleic Acids Res 34:e11CrossRefGoogle Scholar
  6. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168CrossRefGoogle Scholar
  7. Kawasaki H, Ouchi K (1994) A DNA construct useful for specific chromosome loss in Saccharomyces cerevisiae. J Ferment Bioeng 77:125–130CrossRefGoogle Scholar
  8. Kim YH, Kaneko Y, Fukui K, Kobayashi A, Harashima S (2005a) A yeast artificial chromosome-splitting vector designed for precise manipulation of specific plant chromosome region. J Biosci Bioeng 99:55–60CrossRefGoogle Scholar
  9. Kim YH, Ishikawa D, Ha HP, Sugiyama M, Kaneko Y, Harashima S (2006a) Chromosome XII context is important for rDNA function in yeast. Nucleic Acids Res 34:2914–2924CrossRefGoogle Scholar
  10. Kim YH, Sugiyama M, Kaneko Y, Fukui K, Kobayashi A, Harashima S (2006b) A polymerase chain reaction-mediated yeast artificial chromosome-splitting technology for generating targeted yeast artificial chromosomes subclones. Methods Mol Biol 349:103–115PubMedGoogle Scholar
  11. Kim YH, Sugiyama M, Yamagishi K, Kaneko Y, Fukui K, Kobayashi A, Harashima S (2005b) A versatile and general splitting technology for generating targeted YAC subclones. Appl Microbiol Biotechnol 69:65–70CrossRefGoogle Scholar
  12. Kolisnychenko V, Plunkett G III, Herring CD, Feher T, Posfai J, Blattner FR, Posfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12:640–647CrossRefGoogle Scholar
  13. Kouprina N, Larionov V (2006) TAR cloning: insights into gene function, long-range hapolotypes and genome structure and evlolution. Nat Rev Genet 7:805–812CrossRefGoogle Scholar
  14. Kouprina N, Larionov V (2008) Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nature Protocol 3:371–377CrossRefGoogle Scholar
  15. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934CrossRefGoogle Scholar
  16. Mizukami A, Nagamori E, Takakura Y, Matsunaga S, Kaneko Y, Kajiyama S, Harashima S, Kobayashi A, Fukui K (2003) Transformation of yeast using calcium alginate microbeads with surface-immobilized chromosomal DNA. Biotechniques 35:734–740CrossRefGoogle Scholar
  17. Murakami K, Tao E, Ito Y, Sugiyama M, Kaneko Y, Harashima S, Sumiya T, Nakamura A, Nishizawa M (2007) Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism. Appl Microbiol Biotechnol 75:589–597CrossRefGoogle Scholar
  18. Murray AW, Szostak JW (1983) Construction of artificial chromosomes in yeast. Nature 305(5931):189–193CrossRefGoogle Scholar
  19. Murray AW, Schultes NP, Szostak JW (1986) Chromosome length controls mitotic chromosome segregation in yeast. Cell 45:529–536CrossRefGoogle Scholar
  20. Murray AW, Claus TB, Szostak JW (1988) Characterization of two telomeric DNA processing reactions in Saccharomyces cerevisiae. Mol Cell Biol 8:4642–4650CrossRefGoogle Scholar
  21. Noël AJ, Wende W, Pingoud A (2004) DNA recognition by the homing endonuclease PI-SceI involves a divalent metal ion cofactor-induced conformational change. J Biol Chem 279:6794–6804CrossRefGoogle Scholar
  22. `Olson MV (1991) Genome structure and organization in Saccharomyces cerevisiae. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces, vol 1. Cold Spring Harbor Laboratory Press, New York, pp 1–39Google Scholar
  23. Pavan WJ, Hieter P, Sears D, Burkhoff A, Reeves RH (1991) High-efficiency yeast artificial chromosome fragmentation vectors. Gene 106:125–127CrossRefGoogle Scholar
  24. Riethman HC, Moyzis RK, Meyne J, Burke DT, Olson MV (1989) Cloning human telomeric DNA fragments into Saccharomyces cerevisiae using a yeast-artificial- chromosome vector. Proc Natl Acad Sci 86:6240–6244CrossRefGoogle Scholar
  25. Roy N, Runqe KW (1999) The ZDS1 and ZDS2 proteins require the Sir3p component of yeast silent chromatin to enhance the stability of short linear centromeric plasmids. Chromosoma 108:146–161CrossRefGoogle Scholar
  26. Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147CrossRefGoogle Scholar
  27. Sugiyama M, Ikushima S, Nakazawa T, Kaneko Y, Harashima S (2005) PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae. Biotechniques 38:909–914CrossRefGoogle Scholar
  28. Sugiyama M, Yamamoto E, Mukai Y, Kaneko Y, Nishizawa M, Harashima S (2006) Chromosome-shuffling technique for selected chromosomal segments in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 72:947–952CrossRefGoogle Scholar
  29. Sugiyama M, Nishizawa M, Hayashi K, Kaneko Y, Fukui K, Kobayashi A, Harashima S (2003) Repeated chromosome splitting targeted to delta sequences in Saccharomyces cerevisiae. J Biosci Bioeng 96:397–400CrossRefGoogle Scholar
  30. Sugiyama M, Nakazawa T, Murakami K, Sumiya T, Nakamura A, Kaneko Y, Nishizawa M, Harashima S (2008) PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae. Appl Microbiol Biotechnol 80:545–553CrossRefGoogle Scholar
  31. Surosky RT, Neqlon CS, Tye BK (1986) The mitotic stability of deletion derivatives of chromosome III in yeast. Proc Natl Acad Sci USA 83:414–418CrossRefGoogle Scholar
  32. Widianto D, Yamamoto E, Mukai Y, Oshima Y, Harashima S (1997) A method for fusing chromosomes in Saccharomyces cerevisiae. J Ferment Bioeng 83:125–131CrossRefGoogle Scholar
  33. Widianto D, Yamamoto E, Sugiyama M, Mukai Y, Kaneko Y, Oshima Y, Nishizawa M, Harashima S (2003) Creating a Saccharomyces cerevisiae haploid strain having 21 chromosomes. J Biosci Bioeng 95:89–94CrossRefGoogle Scholar
  34. Yamagishi K, Sugiyama M, Kaneko Y, Harashima S (2008a) Conditional chromosome splitting in Saccharomyces cerevisiae using the homing endonuclease PI-SceI. Appl Microbiol Biotechnol 79:699–706CrossRefGoogle Scholar
  35. Yamagishi K, Sugiyama M, Kaneko Y, Nishizawa M, Harashima S (2008b) Construction and characterization of single-gene chromosomes in Saccharomyces cerevisiae. J Biosci Bioeng 106:563–567CrossRefGoogle Scholar
  36. Yu BJ, Sung BH, Koob MD, Lee CH, Lee JH, Lee WS, Kim MS, Kim SC (2002) Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat Biotechnol 20:1018–1023CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Minetaka Sugiyama
    • 1
  • Kazuo Yamagishi
    • 1
  • Yeon-Hee Kim
    • 1
  • Yoshinobu Kaneko
    • 1
  • Masafumi Nishizawa
    • 2
  • Satoshi Harashima
    • 1
    Email author
  1. 1.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuita-shiJapan
  2. 2.Department of Microbiology and ImmunologyKeio University School of MedicineTokyoJapan

Personalised recommendations