Applied Microbiology and Biotechnology

, Volume 85, Issue 3, pp 597–604

Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli

Biotechnologically Relevant Enzymes and Proteins

Abstract

The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99–100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37°C, though it was active between pH 5.0 and pH 9.0 and up to 45°C. Km and Vmax values for recombinant P. aeruginosa lipase were found to be 151.5 ± 29 µM and 217 ± 22.5 µmol min−1 mg−1 protein, respectively.

Keyword

Lipase Co-expression Foldase P. aeruginosa E. coli 

References

  1. Ahn LH, Lee YP, Rhee JS (1997) Investigation of refolding condition for Pseudomonas fluorescens lipase by response surface methodology. J Biotechnol 54:151–160CrossRefGoogle Scholar
  2. Amada K, Haruki M, Imanaka T, Morikawa M, Kanaya S (2000) Overproduction in Escherichia coli, purification and characterization of a family 1.3 lipase from Pseudomonas sp. MIS 38. Biochim Biophys Acta 1478:201–210Google Scholar
  3. Arpigny JS, Jaeger K-E (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183CrossRefGoogle Scholar
  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1987) Current protocols in molecular biology, 2nd edn, vol 1. Wiley, New YorkGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  6. Chand S, Mishra P (2003) Research and applications of microbial enzymes–India’s contribution. Adv Biochem Eng/Biotechnol 85:95–124CrossRefGoogle Scholar
  7. Ferrer M, Chernikova TN, Timmis KN, Golyshin PN (2004) Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Appl Environ Microbiol 70:4499–4504CrossRefGoogle Scholar
  8. Fujii R, Nakagawa Y, Hiratake J, Sogabe A, Sakata K (2005) Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Eng Des Sel 18:93–101CrossRefGoogle Scholar
  9. Gaur R, Gupta A, Khare SK (2008) Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochem 43:1040–1046CrossRefGoogle Scholar
  10. Hobson AH, Buckley CM, Aamand JL, Jorgensen ST, Diderichsen B, Mcconnell DJ (1993) Activation of a bacterial lipase by its chaperone. Proc Natl Acad Sci U S A 90:5682–5686CrossRefGoogle Scholar
  11. Ihara F, Kajeyama Y, Hirata M, Nihira T, Yumuda Y (1991) Purification, characterization, and molecular cloning of lactonizing lipase from Pseudomonas species. J Biol Chem 266:18135–18140Google Scholar
  12. Ihara F, Okamoto I, Akao K, Nihira T, Yamada Y (1995) Lipase modulator protein (LimL) of Pseudomonas sp. strain 109. J Bacteriol 177:1254–1258Google Scholar
  13. Jaeger K-E, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397CrossRefGoogle Scholar
  14. Jorgensen S, Skov KW, Diderichsen B (1991) Cloning, sequence, and expression of a lipase gene from Pseudomonas cepacia: lipase production in heterologous hosts requires two Pseudomonas genes. J Bacteriol 173:559–567Google Scholar
  15. Kato K, Tanaka S, Fujii S, Katayama M, Kimoto S (1999) Preparation of optically active trifluoromethylated (3′-indolyl) thiacarboxylic acids, novel plant growth regulators, through lipase-catalyzed enantioselective hydrolysis. J Biosci Bioeng 87:76–81CrossRefGoogle Scholar
  16. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–245CrossRefGoogle Scholar
  17. Kojima Y, Kobayashi M, Shimizu S (2003) A novel lipase from Pseudomonas fluorescens HU380: gene cloning, overproduction, renaturation–activation, two-step purification and characterization. J Biosci Bioeng 96:242–249Google Scholar
  18. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  19. Liebeton K, Zonta A, Schimossek K, Nardini M, Reetz MT, Jaeger K-E (2000) Directed evolution of an enantioselective lipase. Chem Biol 7:709–718CrossRefGoogle Scholar
  20. Madan B, Mishra P (2009) Overexpression, purification and characterization of organic solvent stable lipase from Bacillus licheniformis RSP-09. J Mol Microbiol Biotechnol doi:10.1159/000208523
  21. Nardini M, Lang DA, Liebeton K, Jaeger K-E, Dijkstra BW (2000) Crystal structure of Pseudomonas aeruginosa lipase in the open conformation. J Biol Chem 275:31219–31225CrossRefGoogle Scholar
  22. Ogino H, Hiroshima S, Hirose S, Yasuda M, Ishmi K, Ishikawa K (2004a) Cloning, expression and characterization of a lipase gene (lip3) from Pseudomonas aeruginosa LST-03. Mol Gen Genomics 271:189–196CrossRefGoogle Scholar
  23. Ogino H, Mimitsuka T, Muto T, Matsmura M, Yasuda M, Ishimi K, Ishikawa H (2004b) Cloning, expression and characterization of a lipolytic enzyme (lip8) from Pseudomonas aeruginosa LST-03. J Mol Microbiol Biotechnol 7:212–223CrossRefGoogle Scholar
  24. Ogino H, Katou Y, Akagi R, Mimitsuka T, Hiroshima S, GembaY DN, Yasuda M, Ishimi K, Ishikawa H (2007) Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles 11:809–817CrossRefGoogle Scholar
  25. Omori K, Isoyama-Tanaka J, Ihara F, Yamada Y, Nihira T (2005) Active lactonizing lipase (LipL) efficiently overproduced by Pseudomonas strains as heterologous expression hosts. J Biosci Bioeng 100:323–330CrossRefGoogle Scholar
  26. Oshima-Hirayama N, Kazuhiro Y, Nishioka T, Oda J (1993) Lipase from Pseudomonas aeruginosa production in Escherichia coli and activation in vitro with a protein from the downstream gene. Eur J Biochem 215:239–246CrossRefGoogle Scholar
  27. Quyen DT, Schmidt-Dannert C, Schmid RD (1999) High-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding. Appl Environ Microbiol 65:787–794Google Scholar
  28. Reetz MT (2002) Lipases as practical biocatalysts. Current Opin Chem Biol 6:145–150CrossRefGoogle Scholar
  29. Reetz MT, Carballeira JD, Peyralans J, Hçbenreich H, Maichele A, Vogel A (2006) Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Chem Eur J 12:6031–6038CrossRefGoogle Scholar
  30. Rosenau F, Tommassen J, Jaeger K-E (2004) Lipase-specific foldases. Chem Bio Chem 5:152–161Google Scholar
  31. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  32. Shibata H, Kato H, Oda J (1998) Calcium ion-dependent reactivation of a Pseudomonas lipase by its specific modulating protein, LipB. J Biochem 123:136–141Google Scholar
  33. Strandberg L, Enfors S-O (1991) Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl Environ Microbiol 57:1669–1674Google Scholar
  34. Traub PC, Schmidt-Dannert C, Schmitt J, Schmid RD (2001) Gene synthesis, expression in E. coli, and in vitro refolding of Pseudomonas sp. KWI 56 and Chromobacterium viscosum lipases and their chaperones. Appl Microbiol Biotechnol 55:198–204CrossRefGoogle Scholar
  35. Ventura S (2005) Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact 4:1–8CrossRefGoogle Scholar
  36. Vera A, Gonzalez-Montalban N, Arıs A, Villaverde A (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96:1101–1106CrossRefGoogle Scholar
  37. Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670Google Scholar
  38. Yang J, Kobayashi K, Iwasaki Y, Nakano H, Yamane T (2000) In vitro analysis of roles of a disulfide bridge and a calcium binding site in activation of Pseudomonas sp. strain KWI-56 lipase. J Bacteriol 182:295–302CrossRefGoogle Scholar
  39. Zaks A, Klibanov AM (1988) Enzymatic catalysis in nonaqueous solvents. J Biol Chem 263:3194–3201Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations