Advertisement

Applied Microbiology and Biotechnology

, Volume 85, Issue 4, pp 1015–1023 | Cite as

Gene cloning and expression of a new acidic family 7 endo-β-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1

  • Huiying Luo
  • Jun Yang
  • Peilong Yang
  • Jiang Li
  • Huoqing Huang
  • Pengjun Shi
  • Yingguo Bai
  • Yaru Wang
  • Yunliu Fan
  • Bin Yao
Biotechnologically Relevant Enzymes and Proteins

Abstract

Most reported microbial β-1,3-1,4-glucanases belong to the glycoside hydrolase family 16. Here, we report a new acidic family 7 endo-β-1,3-1,4-glucanase (Bgl7A) from the acidophilic fungus Bispora sp. MEY-1. The cDNA of Bgl7A was isolated and over-expressed in Pichia pastoris, with a yield of about 1,000 U ml–1 in a 3.7-l fermentor. The purified recombinant Bgl7A had three activity peaks at pH 1.5, 3.5, and 5.0 (maximum), respectively, and a temperature optimum at 60°C. The enzyme was stable at pH 1.0–8.0 and highly resistant to both pepsin and trypsin. Belonging to the group of non-specific endoglucanase, Bgl7A can hydrolyze not only β-glucan and cellulose but also laminarin and oat spelt xylan. The specific activity of Bgl7A against barley β-glucan and lichenan (4,040 and 2,740 U mg–1) was higher than toward carboxymethyl cellulose sodium (395 U mg–1), which was different from other family 7 endo-β-glucanases.

Keywords

Endo-β-1,3-1,4-glucanase Acidophilic fungus Bispora sp. MEY-1 Pichia pastoris 

Notes

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China (863 program, grant no. 2007AA100601), Chinese Program on Research for Public Good (grant no. 2005DIB4J038), and 948 program of the Ministry of Agriculture (grant no. 2007-Z3).

References

  1. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201CrossRefGoogle Scholar
  2. Beckmann L, Simon O, Vahjen W (2006) Isolation and identification of mixed linked β-glucan degrading bacteria in the intestine of broiler chickens and partial characterization of respective 1, 3-1, 4-β-glucanase activities. J Basic Microbiol 46:175–185CrossRefGoogle Scholar
  3. Boyce A, Walsh G (2007) Production, purification and application-relevant characterization of an endo-1, 3(4)-β-glucanase from Rhizomucor miehei. Appl Microbiol Biotechnol 76:835–841CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Buliga GS, Brant DA, Fincher GB (1986) The sequence statistics and solution conformation of a barley (1, 3-1, 4)-β-D-glucan. Carbohydr Res 157:139–156CrossRefGoogle Scholar
  6. Celestino KRS, Cunha RB, Felix CR (2006) Characterization of a β-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry. BMC Biochem 7:23CrossRefGoogle Scholar
  7. Chen H, Li XL, Ljungdahl LG (1997) Sequencing of a 1, 3-1, 4-β-D-glucanase (lichenase) from the anaerobic fungus Orpinomyces strain PC-2: properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. J Bacteriol 179:6028–6034Google Scholar
  8. Claeyssens M, van Tilbeurgh H, Kamerling JP, Berg J, Vrsanska M, Biely P (1990) Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM 9414. Biochem J 270:251–256Google Scholar
  9. Ekinci MS, McCrae SI, Flint HJ (1997) Isolation and overexpression of a gene encoding an extracellular β-(1, 3-1, 4)-glucanase from Streptococcus bovis JB1. Appl Environ Microbiol 63:3752–3756Google Scholar
  10. Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75:319–328CrossRefGoogle Scholar
  11. Görlach JM, van der Knaap E, Walton JD (1998) Cloning and targeted disruption of MLG1, a gene encoding two of three extracellular mixed-linked glucanases of Cochliobolus carbonum. Appl Environ Microbiol 64:385–391Google Scholar
  12. Grishutin SG, Gusakov AV, Dzedzyulya EI, Sinitsyn AP (2006) A lichenase-like family 12 endo-(1, 4)-β-glucanase from Aspergillus japonicus: study of the substrate specificity and mode of action on β-glucans in comparison with other glycoside hydrolases. Carbohydr Res 341:218–229CrossRefGoogle Scholar
  13. Hasper AA, Dekkers E, van Mil M, van de Vondervoort PJI, de Graaff LH (2002) EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68:1556–1560CrossRefGoogle Scholar
  14. Hrmova M, Fincher GB (2001) Plant enzyme structure. Explaining substrate specificity and the evolution of function. Plant Physiol 125:54–57CrossRefGoogle Scholar
  15. Huang HQ, Yang PL, Luo HY, Tang HG, Shao N, Yuan TZ, Wang YR, Bai YG, Yao B (2008) High-level expression of a truncated 1, 3-1, 4-β-D-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl Microbiol Biotechnol 78:95–103CrossRefGoogle Scholar
  16. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405CrossRefGoogle Scholar
  17. Kitamoto N, Go M, Shibayama T, Kimura T, Kito Y, Ohmiya K, Tsukagoshi N (1996) Molecular cloning, purification and characterization of two endo-1, 4-β-glucanases from Aspergillus oryzae KBN616. Appl Microbiol Biotechnol 46:538–544CrossRefGoogle Scholar
  18. Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stahlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes. J Mol Biol 272:383–397CrossRefGoogle Scholar
  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  20. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681CrossRefGoogle Scholar
  21. Luo HY, Wang YR, Wang H, Yang J, Yang YH, Huang HQ, Yang PL, Bai YG, Shi PJ, Fan YL, Yao B (2009a) A novel highly acidic β-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol 82:453–461CrossRefGoogle Scholar
  22. Luo HY, Wang YR, Li J, Wang H, Yang J, Yang YH, Huang HQ, Fan YL, Yao B (2009b) Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb Technol 45:126–133CrossRefGoogle Scholar
  23. Mathlouthi N, Mallet S, Saulnier L, Quemener B, Larbier M (2002) Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and faecal microflora of broiler chickens fed a wheat and barley-based diet. Anim Res 51:395–406CrossRefGoogle Scholar
  24. McCarthy T, Hanniffy O, Savage A, Tuohy MG (2003) Catalytic properties and mode of action of three endo-β-glucanases from Talaromyces emersonii on soluble β-1, 4-and β-1, 3, 1, 4-linked glucans. Int J Biol Macromol 33:141–148CrossRefGoogle Scholar
  25. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  26. Murray PG, Grassick A, Laffey CD, Cuffe MM, Higgins T, Savage AV, Planas A, Tuohy MG (2001) Isolation and characterization of a thermostable endo-β-glucanase active on 1, 3-1, 4-β-D-glucans from the aerobic fungus Talaromyces emersonii CBS 814.70. Enzyme Microb Technol 29:90–98CrossRefGoogle Scholar
  27. Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y (2008) Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Appl Microbiol Biotechnol 81:681–689CrossRefGoogle Scholar
  28. Oh BC, Choi WC, Park S, Kim YO, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372CrossRefGoogle Scholar
  29. Planas A (2000) Bacterial 1, 3-1, 4-β-glucanases: structure, function and protein engineering. Biochem Biophys Acta 1543:361–382Google Scholar
  30. Promdonkoy P, Tang K, Sornlake W, Harnpicharnchai P, Kobayashi RS, Ruanglek V, Upathanpreecha T, Vesaratchavest M, Eurwilaichitr L, Tanapongpipat S (2008) Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiol Lett 290:18–24CrossRefGoogle Scholar
  31. Schou C, Rasmussen G, Kaltoft MB, Henrissat B, Schülein M (1993) Stereochemistry, specificity and kinetics of the hydrolysis of reduced cellodextrins by nine cellulases. Eur J Biochem 217:947–953CrossRefGoogle Scholar
  32. Teng D, Wang J, Fan Y, Yang Y, Tian Z, Luo J, Yang G, Zhang F (2006) Cloning of β-1, 3-1, 4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Appl Microbiol Biotechnol 72:705–712CrossRefGoogle Scholar
  33. Yang PL, Shi PJ, Wang YR, Bai YG, Meng K, Luo HY, Yuan TZ, Yao B (2007) Cloning and overexpression of a Paenibacillus β-glucanase in Pichia pastoris: purification and characterization of the recombinant enzyme. J Microbiol Biotechnol 17:58–66Google Scholar
  34. Yang S, Yan Q, Jiang Z, Fan G, Wang L (2008) Biochemical characterization of a novel thermostable β-1, 3-1, 4-glucanase (lichenase) from Paecilomyces thermophila. J Agric Food Chem 56:5345–5351CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Huiying Luo
    • 1
  • Jun Yang
    • 1
  • Peilong Yang
    • 1
  • Jiang Li
    • 2
  • Huoqing Huang
    • 1
  • Pengjun Shi
    • 1
  • Yingguo Bai
    • 1
  • Yaru Wang
    • 1
  • Yunliu Fan
    • 3
  • Bin Yao
    • 1
  1. 1.Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  2. 2.Department of BiologyEast China Institute of TechnologyFuzhouPeople’s Republic of China
  3. 3.Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations