Advertisement

Applied Microbiology and Biotechnology

, Volume 84, Issue 1, pp 55–62 | Cite as

Recent advances in the biological production of mannitol

  • Seung Hoon Song
  • Claire Vieille
Mini-Review

Abstract

Mannitol is a fructose-derived, 6-carbon sugar alcohol that is widely found in bacteria, yeasts, fungi, and plants. Because of its desirable properties, mannitol has many applications in pharmaceutical products, in the food industry, and in medicine. The current mannitol chemical manufacturing process yields crystalline mannitol in yields below 20 mol% from 50% glucose/50% fructose syrups. Thus, microbial and enzymatic mannitol manufacturing methods have been actively investigated, in particular in the last 10 years. This review summarizes the most recent advances in biological mannitol production, including the development of bacterial-, yeast-, and enzyme-based transformations.

Keywords

Mannitol Fructose Lactic acid bacteria Mannitol biological production Cofactor regeneration Glucose 

Notes

Acknowledgment

This work was supported by the National Research Initiative grant number 2008-35504-04611 from the United States Department of Agriculture’s Cooperative State Research, Education, and Extension Service.

References

  1. Akinterinwa O, Khankal R, Cirino PC (2008) Metabolic engineering for bioproduction of sugar alcohols. Curr Opin Biotechnol 19:461–467CrossRefGoogle Scholar
  2. Baek H, Song KH, Park SM, Kim SY, Hyun HH (2003) Role of glucose in the bioconversion of fructose into mannitol by Candida magnoliae. Biotechnol Lett 25:761–765CrossRefGoogle Scholar
  3. Bäumchen C, Bringer-Meyer S (2007) Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:545–552CrossRefGoogle Scholar
  4. Bäumchen C, Roth AHFJ, Biedendieck R, Malten M, Follmann M, Sahm H, Bringer-Meyer S, Jahn D (2007) Mannitol production by resting state whole cell biotransformation of fructose by heterologous mannitol and formate dehydrogenase gene expression in Bacillus megaterium. Biotechnol J 2:1408–1416CrossRefGoogle Scholar
  5. Bommarius AS, Schawarm M, Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. J Mol Catal B Enzym 5:1–11CrossRefGoogle Scholar
  6. Chinese Chemical Market (2005) Mannitol Production & Market in China. Report number 05M002, 2nd edition. http://www.cnchemicals.com/maindocs/marketreports/maincontent/Mannitol_2005.htm
  7. Chinese Chemical Market (2007) Mannitol Production & Market in China. Report number 05M002, 3rd edition. http://www.cnchemicals.com/maindocs/marketreports/maincontent/Mannitol.htm
  8. Costenoble R, Adler L, Niklasson C, Liden G (2003) Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol. FEMS Yeast Res 3:17–25Google Scholar
  9. Ferain T, Schanck AN, Delcour J (1996) 13C nuclear magnetic resonance analysis of glucose and citrate end products in an ldhL-ldhD double-knockout strain of Lactobacillus plantarum. J Bacteriol 178:7311–7315Google Scholar
  10. Fontes C, Honorato T, Rabelo M, Rodrigues S (2009) Kinetic study of mannitol production using cashew apple juice as substrate. Bioprocess Biosys Engin 32:493–499Google Scholar
  11. Fred EB, Peterson WH, Anderson JA (1921) The characteristics of certain pentose-destroying bacteria, especially as concerns their action on arabinose and xylose. J Biol Chem 48:385–412Google Scholar
  12. Gaspar P, Neves AR, Ramos A, Gasson MJ, Shearman CA, Santos H (2004) Engineering Lactococcus lactis for production of mannitol: high yields from food-grade strains deficient in lactate dehydrogenase and the mannitol transport system. Appl Environ Microbiol 70:1466–1474CrossRefGoogle Scholar
  13. Grobben GJ, Peters SWPG, Wisselink HW, Weusthuis RA, Hoefnagel MHN, Hugenholtz J, Eggink G (2001) Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Appl Environ Microbiol 67:2867–2870CrossRefGoogle Scholar
  14. Hassler BL, Dennis M, Laivenieks M, Zeikus JG, Worden RM (2007) Mutation of Tyr-218 to Phe in Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase: Effects on bioelectronic interface performance. Appl Biochem Biotechnol 143:1–15CrossRefGoogle Scholar
  15. Helanto M, Aarnikunnas J, von Weymarn N, Airaksinen U, Palva A, Leisola M (2005) Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides. J Biotechnol 116:283–294CrossRefGoogle Scholar
  16. Jennings DH (1984) Polyol metabolism in fungi. Adv Microbial Physiol 25:149–193CrossRefGoogle Scholar
  17. Kandler O, Weiss N (1986) Regular, nonsporing gram-positive rods. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1208–1234Google Scholar
  18. Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339CrossRefGoogle Scholar
  19. Kaup B, Bringer-Meyer S, Sahm H (2005) D-Mannitol formation from D-glucose in a whole-cell biotransformation with recombinant Escherichia coli. Appl Microbiol Biotechnol 69:397–403CrossRefGoogle Scholar
  20. Kets EP, Galinski EA, de Wit M, de Bont JA, Heipieper HJ (1996) Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J Bacteriol 178:6665–6670Google Scholar
  21. Kulbe KD, Schwab U, Gudernatsch W (1987) Enzyme-catalyzed production of mannitol and gluconic acid. Product recovery by various procedures. Ann NY Acad Sci 506:552–568CrossRefGoogle Scholar
  22. Le AS, Mulderrig KB (2001) Sorbitol and mannitol. In: O’Bryen Nabors L (ed) Alternative sweeteners. Marcel Dekker, New YorkGoogle Scholar
  23. Lee JK, Song JY, Kim SY (2003) Controlling substrate concentration in fed-batch Candida magnoliae culture increases mannitol production. Biotechnol Prog 19:768–775CrossRefGoogle Scholar
  24. Lee JK, Oh DK, Song HY, Kim IW (2007) Ca2+ and Cu2+ supplementation increases mannitol production by Candida magnoliae. Biotechnol Lett 29:291–294CrossRefGoogle Scholar
  25. Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191CrossRefGoogle Scholar
  26. Martinez G, Barker H, Horecker B (1963) A specific mannitol dehydrogenase from Lactobacillus brevis. J Biol Chem 238:1598–1603Google Scholar
  27. Neves AR, Ramos A, Shearman CA, Gasson MJ, Almeida JS, Santos H (2000) Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Eur J Biochem 267:3859–3868CrossRefGoogle Scholar
  28. Nyyssölä A, Leisola M (2005) Production of sugar alcohols by lactic acid bacteria. Recent Res Devel Biotech Bioeng 7:19–39Google Scholar
  29. Parmentier S, Arnaut F, Soetaert W, Vandamme EJ (2003) Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration. Comm Agric Appl Biol Sci 68:255–262Google Scholar
  30. Pharr DM, Stoop JMH, Williamson JD, Feusi MES, Massel MO, Conkling MA (1995) The dual role of mannitol as osmoprotectant and photoassimilate in celery. HortSci 30:1182–1188Google Scholar
  31. Racine FM, Saha BC (2007) Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochem 42:1609–1613CrossRefGoogle Scholar
  32. Saha B (2006a) A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Appl Microbiol Biotechnol 72:676–680CrossRefGoogle Scholar
  33. Saha BC (2006b) Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693. Enzyme Microb Technol 39:991–995CrossRefGoogle Scholar
  34. Sakai S, Yamanaka K (1968) Crystalline D-mannitol: NAD+ oxidoreductase from Leuconostoc mesenteroides. Biochim Biophys Acta 151:684–686Google Scholar
  35. Silveira M, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408CrossRefGoogle Scholar
  36. Slatner M, Nagl G, Haltrich D, Kulbe KD, Nidetzky B (1998) Enzymatic synthesis of mannitol. Reaction engineering for a recombinant mannitol dehydrogenase. Ann NY Acad Sci 864:450–453CrossRefGoogle Scholar
  37. Smiley KL, Cadmus MC, Liepins P (1967) Biosynthesis of D-mannitol from D-glucose by Aspergillus candidus. Biotechnol Bioeng 9:365–374CrossRefGoogle Scholar
  38. Soetaert W, Buchholz K, Vandamme EJ (1995) Production of D-mannitol and D-lactic acid by fermentation with Leuconostoc mesenteroides. Agrofoodindustry Hi-Tech 6:41–44Google Scholar
  39. Soetaert W, Vanhooren P, Vandamme EJ (1999) The production of mannitol by fermentation. In: Bucke C (ed) Carbohydrate biotechnology protocols. Humana, Totowa, pp 261–275CrossRefGoogle Scholar
  40. Song KH, Lee JK, Song JY, Hong SG, Baek H, Kim SY, Hyun HH (2002) Production of mannitol by a novel strain of Candida magnoliae. Biotechnol Lett 24:9–12CrossRefGoogle Scholar
  41. Song SH, Ahluwalia N, Leduc Y, Delbaere LTJ, Vieille C (2008) Thermotoga maritima TM0298 is a highly thermostable mannitol dehydrogenase. Appl Microbiol Biotechnol 81:485–495CrossRefGoogle Scholar
  42. Sriprapundh D, Vieille C, Zeikus JG (2003) Directed evolution of Thermotoga neapolitana xylose isomerase: high activity on glucose at low temperature and low pH. Protein Eng 16:683–690CrossRefGoogle Scholar
  43. Stoop JM, Mooibroek H (1998) Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom, Agaricus bisporus, and its expression in response to NaCl stress. Appl Environ Microbiol 64:4689–4696Google Scholar
  44. Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144CrossRefGoogle Scholar
  45. Thompson J (1987) Sugar transport in the lactic acid bacteria. In: Reizer JAP (ed) Sugar transport and metabolism in gram-positive bacteria. Ellis Horwood, Chichester, pp 13–38Google Scholar
  46. van der Donk WA, Zhao H (2003) Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 14:421–426CrossRefGoogle Scholar
  47. von Weymarn FNW, Kiviharju KJ, Jääskeläinen ST, Leisola MSA (2003) Scale-up of a new bacterial mannitol production process. Biotechnol Prog 19:815–821CrossRefGoogle Scholar
  48. von Weymarn N, Hujanen H, Leisola M (2002a) Production of D-mannitol by heterofermentative lactic acid bacteria. Process Biochem 37:1207–1213CrossRefGoogle Scholar
  49. von Weymarn N, Kiviharju K, Leisola M (2002b) High-level production of D-mannitol with membrane cell-recycle bioreactor. J Ind Microbiol Biotechnol 29:44–49CrossRefGoogle Scholar
  50. Vrtis JM, White AK, Metcalf WW, van der Donk WA (2002) Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. Angew Chem Int Ed Engl 41:3257–3259CrossRefGoogle Scholar
  51. Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161CrossRefGoogle Scholar
  52. Wisselink HW, Mars AE, van der Meer P, Eggink G, Hugenholtz J (2004) Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds. Appl Environ Microbiol 70:4286–4292CrossRefGoogle Scholar
  53. Wisselink HW, Moers A, Mars AE, Hoefnagel MHN, de Vos WM, Hugenholtz J (2005) Overproduction of heterologous mannitol 1-phosphatase: a key factor for engineering mannitol production by Lactococcus lactis. Appl Environ Microbiol 71:1507–1514CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Microbiology & Molecular Genetics, 2215 Biomedical Physical Sciences BuildingMichigan State UniversityEast LansingUSA
  2. 2.Department of Biochemistry & Molecular BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations