Substrate specificity of Myriococcum thermophilum cellobiose dehydrogenase on mono-, oligo-, and polysaccharides related to in situ production of H2O2

  • S. Pricelius
  • R. Ludwig
  • N. Lant
  • D. Haltrich
  • G. M. Guebitz
Biotechnologically Relevant Enzymes and Proteins


Cellobiose dehydrogenase from the ascomycete fungus Myriococcum thermophilum (MtCDH) was tested for the ability to generate bleaching species at a pH suitable for liquid detergents. The catalytic properties of MtCDH were investigated for a large variety of carbohydrate substrates using oxygen as an electron receptor. MtCDH produces H2O2 with all substrates tested (except fructose) but only in the presence of a chelant. Insoluble substrates like cellulose and cotton could as well be oxidized by MtCDH. To enhance the amount of cello-oligosaccharides in solution, different cellulases on cotton were used and in combination with MtCDH an increased H2O2 concentration could be measured. Additionally, the degradation of pure anthocyanins in solution (as model substrates for bleaching) was investigated in the absence and presence of a horseradish peroxidase. MtCDH was able to produce a sufficient amount of H2O2 to decolorize the anthocyanins within 2 h.


Carbohydrate oxidation Cellobiose dehydrogenase Destaining Hydrogen peroxide Myriococcum thermophilum 


  1. Ander P, Sena-Martins G, Duarte JC (1993) Influence of cellobiose oxidase on peroxidases from Phanerochaete chrysosporium. Biochem J 293:431–435Google Scholar
  2. Ayers AR, Ayers SB, Eriksson KE (1978) Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem 90:171–181CrossRefGoogle Scholar
  3. Baminger U, Nidetzky B, Kulbe KD, Haltrich D (2002) A simple assay for measuring cellobiose dehydrogenase activity in the presence of laccase. J Microbiol Methods 35:253–259CrossRefGoogle Scholar
  4. Baminger U, Subramaniam SS, Renganathan V, Haltrich D (2001) Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. Appl Environ Microbiol 67:1766–1774CrossRefGoogle Scholar
  5. Bao WJ, Renganathan V (1992) Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett 302:77–80CrossRefGoogle Scholar
  6. Bao WJ, Usha SN, Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 300:705–713CrossRefGoogle Scholar
  7. Cameron MD, Aust SD (2001) Cellobiose dehydrogenase—an extracellular fungal flavocytochrome. Enzyme Microb Technol 28:129–138CrossRefGoogle Scholar
  8. Canevascini G, Borer P, Dreyer JL (1991) Cellobiose dehydrogenases of Sporotrichum (Chrysosporium) thermophile. Eur J Biochem 198:43–52CrossRefGoogle Scholar
  9. Denicola A, Souza J, Gatti RM, Augusto O, Radi R (1995) Desferrioxamine inhibition of the hydroxyl radical-like reactivity of peroxynitrite: role of the hydroxamic groups. Free Radical Biol Med 19:11–19CrossRefGoogle Scholar
  10. Grommeck R, Markakis P (2006) The effect of peroxidase on anthocyanin pigments. J Food Sci 29:53–57CrossRefGoogle Scholar
  11. Hallberg BM, Bergfors T, Backbro K, Pettersson G, Henriksson G, Divne C (2000) A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure 8:79–88CrossRefGoogle Scholar
  12. Harreither W, Coman V, Ludwig R, Haltrich D, Gorton L (2007) Investigation of graphite electrodes modified with cellobiose dehydrogenase from the ascomycete Myriococcum thermophilum. Electroanal 19:172–180CrossRefGoogle Scholar
  13. Held C, Kandelbauer A, Schroeder M, Cavaco-Paulo A, Guebitz G (2005) Biotransformation of phenolics with laccase containing bacterial spores. Environ Chem Lett 3:74–77CrossRefGoogle Scholar
  14. Henriksson G, Pettersson G, Johansson G, Ruiz A, Uzcategui E (1991) Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into 2 domains. Eur J Biochem 196:101–106CrossRefGoogle Scholar
  15. Henriksson G, Sild V, Szabo IJ, Pettersson G, Johansson G (1998) Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochim Biophys Acta, Protein Struct Mol Enzymol 1383:48–54CrossRefGoogle Scholar
  16. Henriksson G, Johansson G, Pettersson G (1993) Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase? Biochim Biophys Acta, Bioenerg 1144:184–190CrossRefGoogle Scholar
  17. Hyde SM, Wood PM (1997) A mechanism for production of hydroxyl radicals by the brown rot fungus Coniophora puteana Fe(III) reduction by cellobiose dehydrogenase and Fe(II) oxidation at a distance from the hyphae. Microbiol 143:259–266CrossRefGoogle Scholar
  18. Kaack K, Austed T (1998) Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice processing. Plant Foods Hum Nutr 52:187–198CrossRefGoogle Scholar
  19. Kader F, Rovel B, Girardin M, Metche M (1997) Mechanism of browning in fresh highbush blueberry fruit (Vaccinium corymbosum L). Partial purification and characterisation of blueberry polyphenol oxidase. J Sci Food Agric 73:513–516CrossRefGoogle Scholar
  20. Kremer SM, Wood PM (1992a) Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2. Eur J Biochem 205:133–138CrossRefGoogle Scholar
  21. Kremer SM, Wood PM (1992b) Production of Fenton’s reagent by cellobiose oxidase from cellulolytic cultures of Phanerochaete chrysosporium. Eur J Biochem 208:807–814CrossRefGoogle Scholar
  22. Kruger NJ (1996) The Bradford method for protein quantitation. In: Walker JM (ed) Methods in Molecular Biology. Human, Totowa, pp 15–20Google Scholar
  23. López C, Cavaco-Paulo A (2008) In-situ enzymatic generation of hydrogen peroxide for bleaching purposes. Eng Life Sci 8:315–323CrossRefGoogle Scholar
  24. Ludwig R, Haltrich D (2003) Optimisation of cellobiose dehydrogenase production by the fungus Sclerotium (Athelia) rolfsii. Appl Microbiol Biotechnol 61:32–39Google Scholar
  25. Mason MG, Wilson MT, Ball A, Nicholls P (2002) Oxygen reduction by cellobiose oxidoreductase: the role of the haem group. FEBS Lett 518:29–32CrossRefGoogle Scholar
  26. Mason MG, Nicholls P, Divne C, Hallberg BM, Henriksson G, Wilson MT (2003) The heme domain of cellobiose oxidoreductase: a one-electron reducing system. Biochim Biophys Acta, Bioenerg 1604:47–54CrossRefGoogle Scholar
  27. Morpeth FF (1985) Some properties of cellobiose oxidase from the white rot fungus Sporotrichum pulverulentum. Biochem J 228:557–564Google Scholar
  28. Murkovic M, Adam U, Pfannhauser W (2000) Analysis of anthocyane glycosides in human serum. Fresenius J Anal Chem 366:379–381CrossRefGoogle Scholar
  29. Nutt A, Salumets A, Henriksson G, Sild V, Johansson G (1997) Conversion of O2 species by cellobiose dehydrogenase (cellobiose oxidase) and glucose oxidase a comparison. Biotechnol Lett 19:379–384CrossRefGoogle Scholar
  30. Opwis K, Knittel D, Schollmeyer E, Hoferichter P, Cordes A (2008) Simultaneous application of glucose oxidases and peroxidases in bleaching processes. Eng Life Sci 8:175–178CrossRefGoogle Scholar
  31. Pifferi PG, Cultrera R (1974) Enzymatic degradation of anthocyanins—role of sweet cherry polyphenol oxidase. J Food Sci 39:786–791CrossRefGoogle Scholar
  32. Pricelius S, Murkovic M, Souter P, Guebitz GM (2009) Substrate specificities of glycosidases from Aspergillus sp. pectinase preparations on elderberry anthocyanins. J Agric Food Chem 57:1006–1012CrossRefGoogle Scholar
  33. Queen D, Coutts P, Fierheller P, Sibbald RG (2007) The use of a novel oxygenating hydrogel dressing in the treatment of different chronic wounds. Adv Skin Wound Care 20:200–207CrossRefGoogle Scholar
  34. Renganathan V, Usha SN, Lindenburg F (1990) Cellobiose-oxidizing enzymes from the lignocellulose-degrading basidiomycete Phanerochaete chrysosporium—interaction with microcrystalline cellulose. Appl Microbiol Biotechnol 32:609–613CrossRefGoogle Scholar
  35. Ribitsch D, Karl W, Wehrschuetz-Sigl E, Tutz S, Remler P, Weber H, Gruber K, Stehr R, Bessler C, Hoven N, Sauter K, Maurer K, Schwab H (2009) Heterologous expression and characterization of choline oxidase from the soil bacterium Arthrobacter nicotianae. Appl Microbiol Biotechnol 81:875–886CrossRefGoogle Scholar
  36. Sachslehner A, Haltrich D, Nidetzky B, Kulbe KD (1997) Production of hemicellulose degrading and cellulose degrading enzymes by various strains of Sclerotium rolfsii. Appl Biochem Biotech 63–65:189–201CrossRefGoogle Scholar
  37. Schou C, Christensen MH, Schuelein M (1998) Characterization of a cellobiose dehydrogenase from Humicola insolens. Biochem J 330:565–571Google Scholar
  38. Stoica L, Ruzgas T, Ludwig R, Haltrich D, Gorton L (2006) Direct electron transfer a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporium. Langmuir 22:10801–10806CrossRefGoogle Scholar
  39. Tzanov T, Costa SA, Guebitz GM, Cavaco-Paulo A (2002) Hydrogen peroxide generation with immobilized glucose oxidase for textile bleaching. J Biotechnol 93:87–94CrossRefGoogle Scholar
  40. vanEe Misset O, Baas EJ (1997) Enzymes in Detergency. Marcel Dekker., New YorkGoogle Scholar
  41. Wilson MT, Hogg N, Jones GD (1990) Reactions of reduced cellobiose oxidase with oxygen—is cellobiose oxidase primarily an oxidase? Biochem J 270:265–267Google Scholar
  42. Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50CrossRefGoogle Scholar
  43. Zamocky M, Dunand C (2006) Divergent evolutionary lines of fungal cytochrome c peroxidases belonging to the superfamily of bacterial, fungal and plant heme peroxidases. FEBS Lett 580:6655–6664CrossRefGoogle Scholar
  44. Zamocky M, Schuemann C, Sygmund C, O’Callaghan J, Dobson ADW, Ludwig R, Haltrich D, Peterbauer CK (2008) Cloning, sequence analysis and heterologous expression in Pichia pastoris of a gene encoding a thermostable cellobiose dehydrogenase from Myriococcum thermophilum. Protein Expr Purif 59:258–265CrossRefGoogle Scholar
  45. Zhang LS, Wong GTF (1994) Spectrophotometric determination of H2O2 in marine waters with leuco crystal violet. Talanta 41:2137–2145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Pricelius
    • 1
  • R. Ludwig
    • 2
    • 3
  • N. Lant
    • 4
  • D. Haltrich
    • 2
  • G. M. Guebitz
    • 1
  1. 1.Department of Environmental BiotechnologyGraz University of TechnologyGrazAustria
  2. 2.Department of Food Sciences and TechnologyUniversity of Natural Resources and Applied Life SciencesViennaAustria
  3. 3.Research Centre Applied BiocatalysisGrazAustria
  4. 4.Procter and Gamble Technology CenterNewcastle upon TyneUK

Personalised recommendations