Applied Microbiology and Biotechnology

, Volume 83, Issue 6, pp 1001–1008 | Cite as

Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review

  • Jiří Doucha
  • Karel Lívanský
  • Václav Kotrbáček
  • Vilém Zachleder


Feedstuffs are routinely supplemented with various selenium sources, where organic forms of Se are more bio-available and less toxic than the inorganic forms (selenites, selenates). When the algae are exposed to environmental Se in the form of selenite, they are able as other microorganisms to incorporate the element to different levels, depending on the algae species. Technology of heterotrophic fed-batch cultivation of the microalga Chlorella enriched by organically bound Se was developed, where the cultivation proceeds in fermentors on aerated and mixed nutrient solution with urea as a nitrogen and glucose as a carbon and energy source. High volumetric productivity and high cell concentrations (about 70–100 g Chlorella dry mass l−1) can be attained if nutrients and oxygen are adequately supplied. Addition of a small quantity of a new selenoprotein source-spray-dried Se-Chlorella biomass to the diet of farm animals had better effects on specific physiological and physical parameters of animals than selenite salt and was comparable with Se yeast added to the diet. This review introduces the importance of selenium for humans and animals, methods of Se determination, heterotrophic production of selenium-enriched Chlorella biomass in a fed-batch culture regime on organic carbon, and use of the biomass in animal nutrition.


Chlorella Heterotrophic production Nutrition Organic-bound selenium Se determination 



This work was supported by the EUREKA projects OE 221 and OE 09025 of the Ministry of Education, Youth and Sports of the Czech Republic.


  1. Abdel-Hamid M, Skulberg OM (2006) Effect of selenium on the growth of some selected green and blue-green algae. Lakes Reservoirs: Res Manage 1:205–211CrossRefGoogle Scholar
  2. Ammerman CB, Miller SM (1975) Selenium in ruminant: a review. J Dairy Sci 58:1561–1577CrossRefGoogle Scholar
  3. Arpášová H, Petrovič V, Mellen M, Kačániová M, Čobanová K, Leng L (2009) The effects of supplementing sodium selenite and selenized yeast to the diet for laying hens on the quality and mineral content of eggs. J Anim Feed Sci 18:90–100Google Scholar
  4. Barclay WR, Maeger KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129CrossRefGoogle Scholar
  5. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465CrossRefGoogle Scholar
  6. Bird SM, Uden PC, Tyson JF, Block E, Denoyer E (1997) Speciation of selenoamino acids and organoselenium compounds in selenium-enriched yeast using high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J Anal At Spectrom 12:785–788CrossRefGoogle Scholar
  7. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermentors. J Biotechnol 70:313–321CrossRefGoogle Scholar
  8. Bottino NR, Banks CH, Irgolic KJ, Micks P, Wheeler AE, Zingaro RA (1984) Selenium containing amino acids and proteins in marine algae. Phytochemistry 23:2445–2452CrossRefGoogle Scholar
  9. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599CrossRefGoogle Scholar
  10. Capelo JL, Fernandez C, Pedras B, Santos P, Gonzales P, Vaz C (2006) Trends in selenium determination/speciation by hyphenated techniques based on AAS or AFS. Talanta 68:1442–1447CrossRefGoogle Scholar
  11. Cases J, Vacchina V, Napolitano A, Caporiccio B, Besancon P, Lobin R, Rouanet JM (2001) Selenium from selenium-rich Spirulina is less bio-available than selenium from sodium selenite and selenomethionine in selenium-deficient rats. J Nutr 131:2343–2350Google Scholar
  12. Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotech 14:421–426CrossRefGoogle Scholar
  13. Chen GQ, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616CrossRefGoogle Scholar
  14. Combs GF Jr (2001) Selenium in global food systems. Brit J Nutr 85:517–547CrossRefGoogle Scholar
  15. Darmadi-Blackberry I, Wahlquist ML (2001) Selenium in human health. Curr Ther June:58–62Google Scholar
  16. Dazhi W, Zhaodi C, Shaojing L, Yahui G (2003) Toxicity and accumulation of selenite in four microalgae. Chin J Oceanol Limnol 21:280–285CrossRefGoogle Scholar
  17. De Alcantara S, Lopes CC, Wagener K (1998) Controlled introduction of selenium into Chlorella cells. Indian J Exp Biol 36:1286–1288Google Scholar
  18. Dlouhá G, Ševčíková S, Dokoupilová A, Zita L, Heindl J, Skřivan M (2008) Effect of dietary selenium sources on growth performance, breast muscle selenium, glutathione peroxidase activity and oxidative stability in broilers. Czech J Anim Sci 53:265–269Google Scholar
  19. Doucha J, Lívanský K (2001) Method of controlled cultivation of algae in heterotrophic mode of nutrition. Czech Patent 288638, 2001Google Scholar
  20. Doucha J, Lívanský K (2008) Production strain of the alga Chlorella vulgaris BEIJ. strain Doucha et Lívanský 1996/H 14. Czech Patent 299352, 2008Google Scholar
  21. Doucha J, Lívanský K, Kotrbáček V, Machát J, Skřivan M (2006) Production of Chlorella (Chlorophyta) biomass enriched by selenium and its use as a feed supplement. Proc of the 6th Asia-Pacific Conference on Algal Biotechnology, UP Los Baños, Philippines, October 12-15, 2006, Book of Abstracts, 143-144Google Scholar
  22. Doušková I, Machát J, Umysová D, Vítová M, Doucha J, Zachleder V (2007) Scenedesmus quadricauda - a promising microorganism for selenium-enriched algal biomass production. SEFS-5 Symposium for European Freshwate Sciences, Palermo, Italy, July 7, 2007, Book of Abstracts, p. 197Google Scholar
  23. Dumont E, Vanhaecke F, Cornelis R (2006) Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem 385:1304–1323CrossRefGoogle Scholar
  24. EC Scientific Committee on Food (2003) Opinion of the Scientific Committee on Food on the Revision of Reference Values for Nutrition Labeling. Commission of the European Communities, BrusselsGoogle Scholar
  25. Fan TWM, Lane AN, Martens D, Higashi RM (1998) Synthesis and structure characterization of selenium metabolites. Analyst 123:875–884CrossRefGoogle Scholar
  26. Finley JW (2005) Selenium accumulation in plant foods. Nutr Rev 63(6):196–202CrossRefGoogle Scholar
  27. Griffiths JC, Matulka RA, Power R (2006) Genotoxicity studies on Sel-Plex®, a standardized, registered high-selenium yeast. Int J Toxicol 25:477–485CrossRefGoogle Scholar
  28. Hymer CB, Caruso JA (2006) Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J Chromatogr 1114:1–20CrossRefGoogle Scholar
  29. Kodentsova VM, Gmoshinskii IV, Vrzhesinskaia OA, Beketova NA, Kharitonchik LA, Nizov AA, Mazo VK (2001) Use of the microalgae Spirulina platensis and its selenium-containing form in nutrition of patients with nonspecific ulcerative colitis. (In Russian). Vopr Pitan 70(5):17–21Google Scholar
  30. Kuta J, Machát J, Hořejší E, Doušková I, Vítová M (2008) Speciation of selenoamino acids in Se|-enriched green algae by HPLC-ICP-MS. (In Czech). XIX. Slovak – Czech Spectroscopic Conference, Comenius University, Bratislava, Slovakia, October 12, 2008, Book of Abstracts, p.104Google Scholar
  31. Kvíčala J, Zamrazil V, Tlučhoř B (1996) Deficiency of selenium in inhabitants of highly polluted area of North-west Bohemia. In: Néve J, Chappuis P, Lamand M (eds) Therapeutic uses of trace elements. Plenum, New York, pp 345–350Google Scholar
  32. Larsen EH, Hansen M, Fan T, Vahl M (2001) Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae. J Anal At Spectrom 16:1403–1408CrossRefGoogle Scholar
  33. Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411CrossRefGoogle Scholar
  34. Li ZY, Guo SY, Li L (2003) Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresour Technol 89:171–176CrossRefGoogle Scholar
  35. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771CrossRefGoogle Scholar
  36. Lobinski R, Edmonds JS, Suzuki KT, Uden PC (2000) Species-selective determination of selenium compounds in biological materials (Technical report). Pure Appl Chem 72:447–461CrossRefGoogle Scholar
  37. Machát J, Čmelík J, Doucha J, Otruba V (2005a) Se-enriched alga Chlorella—fractionation of Se forms-(In Czech). In: Mikroelementy 2005. 2Theta, Český Těšín, 71-75Google Scholar
  38. Machát J, Burianová I, Čmelík J, Niedobová E, Doucha J, Kanický V (2005b) Distribution of selenium and iodine in Chlorella cells enriched during cultivation. Proc 6th Eur Workshop Eur Soc Microalgal Biotech. Nuthetal: IGV GmbH, Germany, May 23, 2005, Book of Abstracts, 3S/P4-1Google Scholar
  39. Mayland HF (1994) Selenium in plant and animal nutrition. In: Frankenberger WT, Benson S (eds) Selenium in the environment. Marcel Dekker, New York, pp 29–45Google Scholar
  40. McSheehy S, Pohl P, Szpunar J, Potin-Gautier M, Lobinski R (2001) Analysis for selenium speciation in selenized yeast extracts by two-dimensional liquid chromatography with ICP-MS and electrospray MS-MS detection. J Anal At Spectrom 16:68–73CrossRefGoogle Scholar
  41. Mosulishvili LM, Kirkesali YI, Belokobylsky AI, Khizanishvili AI, Frontasyeva MV, Gundorina SF, Oprea CD (2002) Epithermal neutron activation analysis of blue-green algae Spirulina platensis as a matrix for selenium-containing pharmaceuticals. J Radioanal Nucl Chem 252:15–20CrossRefGoogle Scholar
  42. Navarro-Alarcon M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141CrossRefGoogle Scholar
  43. Neumann PM, De Souza MP, Pickering IJ, Terry N (2003) Rapid microalgal metabolism of selenate to volatile dimethylselenite. Plant Cell & Environ 26:897–905CrossRefGoogle Scholar
  44. Neve J (2000) New indices for assessment of trace element status and requirement, with a special focus on selenium. In: Roussel AM, Favier A, Anderson RA (eds) Trace elements in man and animals. Proc of tenth international symposium on trace elements in man and animals. Plenum, New York, pp 317–322Google Scholar
  45. Patrick L (2004) Selenium biochemistry and cancer: a review of the literature. Alter Med-Rev 9:239–258Google Scholar
  46. Pedrero Z, Madrid Y (2008) Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta 634:135–152CrossRefGoogle Scholar
  47. Pelah D, Cohen E (2005) Cellular response of Chlorella zofingiensis to exogenous selenium. Plant Growth Regul 45:225–232CrossRefGoogle Scholar
  48. Polatajko A, Jakubowski N, Szpunar J (2006) State of the art report of selenium speciation in biological samples. J Anal At Spectrom 21:639–654CrossRefGoogle Scholar
  49. Pronina NA, Kovshova YI, Popova VV, Lapin AB, Alekseeva SG, Baum RF, Mishina IM, Tsoglin LN (2002) The effect of selenite ions on growth and selenium accumulation in Spirulina platensis. Russian J Plant Physiol 49:235–241CrossRefGoogle Scholar
  50. Quin SY, Gao JZ, Juany KH (2007) Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biol Trace Elem Res 116:91–102CrossRefGoogle Scholar
  51. Rayman MP (2004) The use of high-selenium yeast to raise selenium status: how does it measure up? Brit J Nutr 92:557–573CrossRefGoogle Scholar
  52. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542CrossRefGoogle Scholar
  53. Reilly C (1996) Selenium in food and health. Blackie Academic & Professional, LondonGoogle Scholar
  54. Rodinová H, Kroupová V, Trávníček J, Staňková M, Písek L (2008) Dynamics of IgG in the blood serum of sheep with different selenium intake. Vet Med 53:260–265Google Scholar
  55. Sager M (2006) Selenium in agriculture, food, and nutrition. Pure Appl Chem 78:111–133CrossRefGoogle Scholar
  56. Schrauzer GN (1998) Selenomethionine: a review of its natural significance, metabolism and toxicity. J Nutr 130:1653–1656Google Scholar
  57. Schrauzer GN (2000) Anticarcinogenic effects of selenium. Cell Mol Life Sci 57:1864–1873CrossRefGoogle Scholar
  58. Schrauzer GN (2003) The nutritional significance, metabolism and toxicology of selenomethionine. Adv Food Nutr Res 47:73–112CrossRefGoogle Scholar
  59. Schrauzer GN (2006) Selenium yeast: composition, quality, analysis, and safety. Pure Appl Chem 78:105–109CrossRefGoogle Scholar
  60. Ševčíková S, Skřivan M, Dlouhá G, Koucký M (2006) The effect of selenium source on the performance and meat quality of broiler chickens. Czech J Anim Sci 51:449–457Google Scholar
  61. Skřivan M, Šimáně J, Dlouhá G, Doucha J (2006) Effect of dietary sodium selenite, Se-enriched yeast and Se-enriched Chlorella on egg Se concentration, physical parameters of eggs and laying hen production. Czech J Anim Sci 51:163–167Google Scholar
  62. Skřivan M, Marounek M, Dlouhá G, Ševčíková S (2008) Dietary selenium increases vitamin E contents of egg yolk and chicken meat. Brit Poultry Sci 49:482–486Google Scholar
  63. Suhajda A, Hegoczki J, Janzso B, Pais I, Vereczkey G (2000) Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J Trace Elem Med Biol 14:43–47CrossRefGoogle Scholar
  64. Sunde RA (1997) In: O’Dell BL, Sunde RA (eds) Handbook of nutritionally essential mineral elements. Marcel Dekker, New York, pp 493–556Google Scholar
  65. Surai PF (2002a) Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. World Poultry Sci J 58:333–347CrossRefGoogle Scholar
  66. Surai PF (2002b) Selenium in poultry nutrition 2. Reproduction, egg and meat quality and practical applications. World′s Poult Sci J 58:431–450CrossRefGoogle Scholar
  67. Surai PF (2006) Selenium in nutrition and health. Nottingham University Press, Nottingham, p 974Google Scholar
  68. Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391–402CrossRefGoogle Scholar
  69. Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137:103–110CrossRefGoogle Scholar
  70. Trávníček J, Písek L, Herzig I, Doucha J, Kvíčala J, Kroupová V, Rodinová H (2007) Selenium content in the blood serum and urine of ewes receiving selenium-enriched unicellular alga Chlorella. Vet Med 52:42–48Google Scholar
  71. Trávníček J, Racek J, Trefil L, Rodinová H, Kroupová V, Illek J, Doucha J, Písek L (2008) Activity of glutathione peroxidase (GSH-Px) in the blood of ewes and their lambs receiving the selenium-enriched unicellular alga Chlorella. Czech J Anim Sci 53:292–298Google Scholar
  72. Uden PC (2005) Speciation of selenium. In: Cornelis R, Caruso J, Crews H, Heumann KG (eds) Handbook of elemental speciation II: species in the environment, food, medicine and occupational health. Wiley, New York, pp 246–365Google Scholar
  73. Uden PC, Boakye HT, Kahakachchi C, Tyson JF (2004) Selective detection and identification of Se containing compounds - review and recent developments. J Chromatogr 1050(1):85–93CrossRefGoogle Scholar
  74. Umysová D, Vítová M, Doušková I, Bišová K, Hlavová M, Čížková M, Doucha J, Machát J, Zachleder V (2009) Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol 9, in pressCrossRefGoogle Scholar
  75. Upton JR, Edens FW, Ferket PR (2008) Selenium yeast effect on broiler performance. Int J Poultry Sci 7:798–805CrossRefGoogle Scholar
  76. Van Vleet JF (1980) Current knowledge of selenium-vitamin E deficiency in domestic animals. J Amer Veter Med Assoc 176:321–325Google Scholar
  77. Wada O, Kurihara N, Yamazaki N (1993) Essentiality and toxicity of trace elements. Jap J Nutr Assess 10:199–210Google Scholar
  78. Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232Google Scholar
  79. Wu Z, Shi X (2006) Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18CrossRefGoogle Scholar
  80. Wu ZY, Shi CL, Shi XM (2007) Modeling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures. World J Microbiol Biotechnol 23:1233–1238CrossRefGoogle Scholar
  81. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jiří Doucha
    • 1
  • Karel Lívanský
    • 1
  • Václav Kotrbáček
    • 2
  • Vilém Zachleder
    • 1
  1. 1.Division of Autotrophic Microorganisms, Institute of MicrobiologyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic
  2. 2.University of Veterinary and Pharmaceutical SciencesBrnoCzech Republic

Personalised recommendations