Applied Microbiology and Biotechnology

, Volume 83, Issue 4, pp 597–610

Understanding the industrial application potential of lactic acid bacteria through genomics



Lactic acid bacteria (LAB) are a heterogeneous group of bacteria contributing to various industrial applications, ranging from food and beverage fermentation, bulk and fine chemicals production to pharmaceuticals manufacturing. Genome sequencing is booming; hitherto, 25 genomes of LAB have been published and many more are in progress. Based on genomic content of LAB, this review highlights some findings related to applications revealed by genomics and functional genomics analyses. Finally, this review summarizes mathematical modeling strategies of LAB in the context of genomics, to further our understanding of industrial related features.


Genomics Lactic acid bacteria Application 


  1. Alpert CA, Crutz-Le Coq AM, Malleret C, Zagorec M (2003) Characterization of a theta-type plasmid from Lactobacillus sakei: a potential basis for low-copy-number vectors in lactobacilli. Appl Environ Microbiol 69:5574–5584Google Scholar
  2. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M et al (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102:3906–3912Google Scholar
  3. An HY, Miyamoto T (2006) Cloning and sequencing of plasmid pLC494 isolated from human intestinal Lactobacillus casei: construction of an Escherichia coliLactobacillus shuttle vector. Plasmid 55:128–134Google Scholar
  4. Axelsson L, Lindstad G, Naterstad K (2003) Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 37:115–120Google Scholar
  5. Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB, Pfeiler EA, O'Flaherty S, Buck BL, Dobson A, Duong T et al (2008) Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 74:4610–4625Google Scholar
  6. Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR (2003) Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A 100:8957–8962Google Scholar
  7. Barrangou R, Azcarate-Peril MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR (2006) Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc Natl Acad Sci U S A 103:3816–3821Google Scholar
  8. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753Google Scholar
  9. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558Google Scholar
  10. Borodina I, Nielsen J (2005) From genomes to in silico cells via metabolic networks. Curr Opin Biotechnol 16:350–355Google Scholar
  11. Boucher I, Parrot M, Gaudreau H, Champagne CP, Vadeboncoeur C, Moineau S (2002) Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl Environ Microbiol 68:6152–6161Google Scholar
  12. Bron PA, Molenaar D, de Vos WM, Kleerebezem M (2006) DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100:728–738Google Scholar
  13. Bryan EM, Bae T, Kleerebezem M, Dunny GM (2000) Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44:183–190Google Scholar
  14. Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich DS, Maguin E (2005) Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics 5:4794–4807Google Scholar
  15. Bulik S, Grimbs S, Huthmacher C, Selbig J, Holzhutter HG (2009) Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws—a promising method for speeding up the kinetic modelling of complex metabolic networks. FEBS J 276:410–424Google Scholar
  16. Burgess C, O'Connell-Motherway M, Sybesma W, Hugenholtz J, van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70:5769–5777Google Scholar
  17. Callanan M, Kaleta P, O'Callaghan J, O'Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald GF, Beresford T et al (2008) Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190:727–735Google Scholar
  18. Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 87:113–130Google Scholar
  19. Chagnaud P, Chan Kwo Chion CK, Duran R, Naouri P, Arnaud A, Galzy P (1992) Construction of a new shuttle vector for Lactobacillus. Can J Microbiol 38:69–74Google Scholar
  20. Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongere E, Bossy R, Loux V et al (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23:1527–1533Google Scholar
  21. Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeno-Tarraga AM, Parkhill J, Flynn S, O'Sullivan GC, Collins JK et al (2006) Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 103:6718–6723Google Scholar
  22. Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277:28058–28064Google Scholar
  23. Covert MW, Palsson BO (2003) Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol 221:309–325Google Scholar
  24. Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24:2044–2050Google Scholar
  25. Cox SJ, Shalel Levanon S, Bennett GN, San KY (2005) Genetically constrained metabolic flux analysis. Metab Eng 7:445–456Google Scholar
  26. Crutz-Le Coq AM, Zagorec M (2008) Vectors for lactobacilli and other Gram-positive bacteria based on the minimal replicon of pRV500 from Lactobacillus sakei. Plasmid 60:212–220Google Scholar
  27. de Ruyter PG, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter I, de Vos WM (1996a) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178:3434–3439Google Scholar
  28. de Ruyter PG, Kuipers OP, de Vos WM (1996b) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667Google Scholar
  29. de Ruyter PG, Kuipers OP, Meijer WC, de Vos WM (1997) Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotechnol 15:976–979Google Scholar
  30. De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199Google Scholar
  31. Derzelle S, Bolotin A, Mistou MY, Rul F (2005) Proteome analysis of Streptococcus thermophilus grown in milk reveals pyruvate formate-lyase as the major upregulated protein. Appl Environ Microbiol 71:8597–8605Google Scholar
  32. Desiere F, Lucchini S, Canchaya C, Ventura M, Brussow H (2002) Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek 82:73–91Google Scholar
  33. Dickely F, Nilsson D, Hansen EB, Johansen E (1995) Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol Microbiol 15:839–847Google Scholar
  34. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006a) Lactobacillus brevis ATCC 367. In: JGI. Available via DIALOG. Accessed 28 Apr 2009
  35. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006b) Lactobacillus casei ATCC 334. In: JGI. Available via DIALOG. Accessed 28 Apr 2009
  36. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006c) Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293. In: JGI. Available via DIALOG. Accessed 28 Apr 2009
  37. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006d) Pediococcus pentosaceus ATCC 25745. In: JGI. Available via DIALOG. Accessed 28 Apr 2009
  38. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006e) Streptococcus thermophilus LMD-9. In: JGI. Available via DIALOG. Accessed 28 Apr 2009
  39. Emond E, Lavallee R, Drolet G, Moineau S, LaPointe G (2001) Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl Environ Microbiol 67:1700–1709Google Scholar
  40. Fang F, Flynn S, Li Y, Claesson MJ, van Pijkeren JP, Collins JK, van Sinderen D, O'Toole PW (2008) Characterization of endogenous plasmids from Lactobacillus salivarius UCC118. Appl Environ Microbiol 74:3216–3228Google Scholar
  41. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143Google Scholar
  42. Frazier CL, Filippo JS, Lambowitz AM, Mills DA (2003) Genetic manipulation of Lactococcus lactis by using targeted group II introns: Generation of stable insertions without selection. Appl Environ Microbiol 69:1121–1128Google Scholar
  43. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732Google Scholar
  44. Gaudu P, Vido K, Cesselin B, Kulakauskas S, Tremblay J, Rezaiki L, Lamberret G, Sourice S, Duwat P, Gruss A (2002) Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82:263–269Google Scholar
  45. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412Google Scholar
  46. Gitton C, Meyrand M, Wang J, Caron C, Trubuil A, Guillot A, Mistou MY (2005) Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk. Appl Environ Microbiol 71:7152–7163Google Scholar
  47. Gosalbes MJ, Esteban CD, Galan JL, Perez-Martinez G (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66:4822–4828Google Scholar
  48. Hashiba H, Takiguchi R, Ishii S, Aoyama K (1990) Transformation of Lactobacillus helveticus subsp. jugurti with plasmid pLHR by electroporation. Agric Biol Chem 54:1537–1541Google Scholar
  49. Hayes F, Daly C, Fitzgerald GF (1990) Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 Plasmid pCI305. Appl Environ Microbiol 56:202–209Google Scholar
  50. Herve-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin ERul F (2009) Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 75:2062–2073Google Scholar
  51. Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van S II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003–1013Google Scholar
  52. Holzapfel WHN, Wood BJ (1998) The genera of lactic acid bacteria. Blackie Academic & Professional, LondonGoogle Scholar
  53. Hoppe A, Hoffmann S, Holzhutter HG (2007) Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst Biol 1:23Google Scholar
  54. Horn N, Wegmann U, Narbad A, Gasson MJ (2005) Characterisation of a novel plasmid p9785S from Lactobacillus johnsonii FI9785. Plasmid 54:176–183Google Scholar
  55. Hugenholtz J, Sybesma W, Groot MN, Wisselink W, Ladero V, Burgess K, van Sinderen D, Piard JC, Eggink G, Smid EJ et al (2002) Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82:217–235Google Scholar
  56. Jamshidi N, Palsson BO (2008) Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol 4:171Google Scholar
  57. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654Google Scholar
  58. Jeong SJ, Park JY, Lee HJ, Kim JH (2007) Characterization of pFMBL1, a small cryptic plasmid isolated from Leuconostoc mesenteroides SY2. Plasmid 57:314–323Google Scholar
  59. Kandler O, Weiss N (1986) Bergey's manual of systematic bacteriology. Williams and Wilkins, BaltimoreGoogle Scholar
  60. Kim JH, Mills DA (2007) Improvement of a nisin-inducible expression vector for use in lactic acid bacteria. Plasmid 58:275–283Google Scholar
  61. Kim JF, Jeong H, Lee JS, Choi SH, Ha M, Hur CG, Kim JS, Lee S, Park HS, Park YH et al (2008) Complete genome sequence of Leuconostoc citreum KM20. J Bacteriol 190:3093–3094Google Scholar
  62. Klaenhammer TR (2000) Probiotic bacteria: today and tomorrow. J Nutr 130:415S–416SGoogle Scholar
  63. Klaenhammer TR, Altermann E, Pfeiler E, Buck BL, Goh YJ, O'Flaherty S, Barrangou R, Duong T (2008) Functional genomics of probiotic Lactobacilli. J Clin Gastroenterol 42(Suppl 3 Pt 2):S160–S162CrossRefGoogle Scholar
  64. Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584Google Scholar
  65. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995Google Scholar
  66. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21Google Scholar
  67. Kwon S, Yoo IK, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73:25–34Google Scholar
  68. Lee JH, Halgerson JS, Kim JH, O'Sullivan DJ (2007) Comparative sequence analysis of plasmids from Lactobacillus delbrueckii and construction of a shuttle cloning vector. Appl Environ Microbiol 73:4417–4424Google Scholar
  69. Lambert JM, Bongers RS, Kleerebezem M (2007) Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol 73:1126–1135Google Scholar
  70. Lawerence RC, Thomas TD, Terzaghi BE (1976) Reviews of the progress of dairy science: cheese starters. J Dairy Res 43:141–193CrossRefGoogle Scholar
  71. Lee J, Yun H, Feist AM, Palsson BO, Lee SY (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80:849–862Google Scholar
  72. Li Y, Raftis E, Canchaya C, Fitzgerald GF, van Sinderen D, O'Toole PW (2006) Polyphasic analysis indicates that Lactobacillus salivarius subsp salivarius and Lactobacillus salivarius subsp salicinius do not merit separate subspecies status. Int J Syst Evol Microbiol 56:2397–2403Google Scholar
  73. Li Y, Canchaya C, Fang F, Raftis E, Ryan KA, van Pijkeren JP, van Sinderen D, O'Toole PW (2007) Distribution of megaplasmids in Lactobacillus salivarius and other lactobacilli. J Bacteriol 189:6128–6139Google Scholar
  74. Lin CF, Chung TC (1999) Cloning of erythromycin-resistance determinants and replication origins from indigenous plasmids of Lactobacillus reuteri for potential use in construction of cloning vectors. Plasmid 42:31–41Google Scholar
  75. Lin MY, Harlander S, Savaiano D (1996) Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus. Appl Microbiol Biotechnol 45:484–489Google Scholar
  76. Liu M, Nauta A, Francke C, Siezen RJ (2008) Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol 74:4590–4600Google Scholar
  77. Luo RY, Liao S, Tao GY, Li YY, Zeng S, Li YX, Luo Q (2006) Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions. Mol Syst Biol 2:2006.0031Google Scholar
  78. Mahadevan R, Edwards JS, Doyle FJ III (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340Google Scholar
  79. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616Google Scholar
  80. Martin MC, Alonso JC, Suarez JE, Alvarez MA (2000) Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl Environ Microbiol 66:2599–2604Google Scholar
  81. Mauriello G, Aponte M, Andolfi R, Moschetti G, Villani F (1999) Spray-drying of bacteriocin-producing lactic acid bacteria. J Food Prot 62:773–777Google Scholar
  82. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717Google Scholar
  83. Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475Google Scholar
  84. Min Lee J, Gianchandani EP, Eddy JA, Papin JA (2008) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4:e1000086Google Scholar
  85. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187:6119–6127Google Scholar
  86. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T et al (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15:151–161Google Scholar
  87. Neu T, Henrich B (2003) New thermosensitive delivery vector and its use to enable nisin-controlled gene expression in Lactobacillus gasseri. Appl Environ Microbiol 69:1377–1382Google Scholar
  88. Nikerel IE, van Winden WA, van Gulik WM, Heijnen JJ (2006) A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics. BMC Bioinformatics 7:540Google Scholar
  89. Oddone GM, Mills DA, Block DE (2009) Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria. Plasmid 61(3):151–158Google Scholar
  90. Oliveira A, Nielsen J, Forster J (2005a) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39Google Scholar
  91. Oliveira AP, Nielsen J, Forster J (2005b) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39Google Scholar
  92. Park J, Lee M, Jung J, Kim J (2005) pIH01, a small cryptic plasmid from Leuconostoc citreum IH3. Plasmid 54:184–189Google Scholar
  93. Pastink MI, Sieuwerts S, de Bok FAM, Janssen PWM, Teusink B, Vlieg JETV, Hugenholtz J (2008) Genomics and high-throughput screening approaches for optimal flavour production in dairy fermentation. Int Dairy J 18:781–789Google Scholar
  94. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, del Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712Google Scholar
  95. Pavlova SI, Kilic AO, Topisirovic L, Miladinov N, Hatzos C, Tao L (2002) Characterization of a cryptic plasmid from Lactobacillus fermentum KC5b and its use for constructing a stable Lactobacillus cloning vector. Plasmid 47:182–192Google Scholar
  96. Pedersen MB, Garrigues C, Tuphile K, Brun C, Vido K, Bennedsen M, Mollgaard H, Gaudu P, Gruss A (2008) Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 190:4903–4911Google Scholar
  97. Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624–4634Google Scholar
  98. Pieterse B, Leer RJ, Schuren FH, van der Werf MJ (2005) Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:3881–3894Google Scholar
  99. Piskur J, Schnackerz KD, Andersen G, Bjornberg O (2007) Comparative genomics reveals novel biochemical pathways. Trends Genet 23:369–372Google Scholar
  100. Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 62:1008–1013Google Scholar
  101. Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J, de Vos WM, van der Meer R, Smits MA, Kleerebezem M (2005) Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187:6128–6136Google Scholar
  102. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R et al (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101:2512–2517Google Scholar
  103. Rallu F, Gruss A, Maguin E (1996) Lactococcus lactis and stress. Antonie Van Leeuwenhoek 70:243–251Google Scholar
  104. Russell WM, Klaenhammer TR (2001) Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl Environ Microbiol 67:4361–4364Google Scholar
  105. Sakai K, Ezaki Y (2006) Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J Biosci Bioeng 101:457–463Google Scholar
  106. Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S (2007) Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microbiol 73:1753–1765Google Scholar
  107. Serrano LM, Molenaar D, Wels M, Teusink B, Bron P, de Vos W, Smid E (2007) Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb Cell Fact 6:29Google Scholar
  108. Shearman C, Godon JJ, Gasson M (1996) Splicing of a group II intron in a functional transfer gene of Lactococcus lactis. Mol Microbiol 21:45–53Google Scholar
  109. Shimizu-Kadota M (2001) A method to maintain introduced DNA sequences stably and safely on the bacterial chromosome: application of prophage integration and subsequent designed excision. J Biotechnol 89:73–79Google Scholar
  110. Sieuwerts S, de Bok FA, Hugenholtz J, van Hylckama Vlieg JE (2008) Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 74:4997–5007Google Scholar
  111. Sijpesteijn A (1970) Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie Van Leeuwenhoek 36(348):335–348Google Scholar
  112. Smallbone K, Simeonidis E, Broomhead DS, Kell DB (2007) Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS J 274:5576–5585Google Scholar
  113. Smeianov VV, Wechter P, Broadbent JR, Hughes JE, Rodriguez BT, Christensen TK, Ardo Y, Steele JL (2007) Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl Environ Microbiol 73:2661–2672Google Scholar
  114. Sorensen KI, Larsen R, Kibenich A, Junge MP, Johansen E (2000) A food-grade cloning system for industrial strains of Lactococcus lactis. Appl Environ Microbiol 66:1253–1258Google Scholar
  115. Sorvig E, Gronqvist S, Naterstad K, Mathiesen G, Eijsink VG, Axelsson L (2003) Construction of vectors for inducible gene expression in Lactobacillus sakei and L plantarum. FEMS Microbiol Lett 229:119–126Google Scholar
  116. Sorvig E, Skaugen M, Naterstad K, Eijsink VG, Axelsson L (2005) Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin-antitoxin-like plasmid maintenance system. Microbiology 151:421–431Google Scholar
  117. Stephanopoulos G (2002) Metabolic engineering by genome shuffling. Nat Biotechnol 20:666–668Google Scholar
  118. Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek 70:331–345Google Scholar
  119. Sudhamani M, Ismaiel E, Geis A, Batish V, Heller KJ (2008) Characterisation of pSMA23, a 3.5 kbp plasmid of Lactobacillus casei, and application for heterologous expression in Lactobacillus. Plasmid 59:11–19Google Scholar
  120. Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz J (2003) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:3069–3076Google Scholar
  121. Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H et al (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A 105:17323–17327Google Scholar
  122. Takala TM, Saris PE (2002) A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol 59:467–471Google Scholar
  123. Tamime AY, Robinson RK (1999) Yoghurt: science and technology. Woodhead, CambridgeGoogle Scholar
  124. Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F (2003) Lactobacillus reuteri CRL1098 produces cobalamin. J Bacteriol 185:5643–5647Google Scholar
  125. Teresa Alegre M, Rodriguez MC, Mesas JM (2009) Characterization of pRS5: a theta-type plasmid found in a strain of Pediococcus pentosaceus isolated from wine that can be used to generate cloning vectors for lactic acid bacteria. Plasmid 61:130–134Google Scholar
  126. Teusink B, Smid EJ (2006) Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat Rev Microbiol 4:46–56Google Scholar
  127. Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, Smid EJ (2006) Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem 281:40041–40048Google Scholar
  128. Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269Google Scholar
  129. Trinh CT, Wlaschin A, Srienc F (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81:813–826Google Scholar
  130. Urbach G (1995) Contribution of lactic acid bacteria to flavour compound formation in dairy products. Int Dairy J 5:877–903Google Scholar
  131. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216Google Scholar
  132. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A et al (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 103:9274–9279Google Scholar
  133. van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, Kleerebezem M (2005) Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 71:1223–1230Google Scholar
  134. Vido K, Le Bars D, Mistou MY, Anglade P, Gruss A, Gaudu P (2004) Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. J Bacteriol 186:1648–1657Google Scholar
  135. Voit EO (2008) Modelling metabolic networks using power-laws and S-systems. Essays Biochem 45:29–40Google Scholar
  136. Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP et al (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270Google Scholar
  137. Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21:269–274Google Scholar
  138. Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819Google Scholar
  139. Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161Google Scholar
  140. Wu CM, Lin CF, Chang YC, Chung TC (2006) Construction and characterization of nisin-controlled expression vectors for use in Lactobacillus reuteri. Biosci Biotechnol Biochem Biosci Biotechnol Biochem 70:757–767Google Scholar
  141. Xie Y, Chou LS, Cutler A, Weimer B (2004) DNA Macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70:6738–6747Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute of MicrobiologyChinese Academy of SciencesBeijingChina

Personalised recommendations