Applied Microbiology and Biotechnology

, Volume 84, Issue 4, pp 733–739 | Cite as

Development of novel cell surface display in Corynebacterium glutamicum using porin

  • Toshihiro Tateno
  • Kazuki Hatada
  • Tsutomu Tanaka
  • Hideki Fukuda
  • Akihiko Kondo
Applied Genetics and Molecular Biotechnology


We have developed a novel cell surface display in Corynebacterium glutamicum using porin proteins as anchor proteins. Porins are localized at C. glutamicum mycolic acid layer and exist as a hexamer. We used α-amylase from Streptococcus bovis 148 (AmyA) as a model protein to be displayed on the C. glutamicum cell surface. AmyA was fused to the C terminus of the porins PorB, PorC, or PorH. Expression vectors using fused proteins under the control of the cspB promoter were constructed and introduced into the C. glutamicum Cm strain. Immunostaining microscopy and flow cytometric analysis revealed that PorB-AmyA, PorC-AmyA, and PorH-AmyA were displayed on the C. glutamicum cell surface. AmyA activity was only detected in the cell fraction of C. glutamicum cells that displayed AmyA fused to PorB, PorC or PorH and AmyA activity was not detected in the supernatants of C. glutamicum culture broths after 72 h cultivation. Thus, we have demonstrated that C. glutamicum porins are very efficient anchor proteins for protein display in C. glutamicum.


Corynebacterium glutamicum Cell surface display Porin 


  1. Bayan N, Houssin C, Chami M, Leblon G (2003) Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J Biotechnol 104:55–67CrossRefGoogle Scholar
  2. Costa-Riu N, Burkovski A, Krämer R, Benz R (2003a) PorA represents the major cell wall channel of the Gram-positive bacterium Corynebacterium glutamicum. J Bacteriol 185:4779–4786CrossRefGoogle Scholar
  3. Costa-Riu N, Maier E, Burkovski A, Krämer R, Lottspeich F, Benz R (2003b) Identification of an anion-specific channel in the cell wall of the Gram-positive bacterium Corynebacterium glutamicum. Mol Microbiol 50:1295–1308CrossRefGoogle Scholar
  4. Freudl R, MacIntyre S, Degen M, Henning U (1986) Cell structure of the outer membrane protein OmpA of Escherichia coli K-12. J Mol Biol 188:491–494CrossRefGoogle Scholar
  5. Fuchs P, Breitling F, Dübel S, Seehaus T, Little M (1991) Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein. Biotechnology (N Y) 9:1369–1372CrossRefGoogle Scholar
  6. Hansson M, Samuelson P, Gunneriusson E, Ståhl S (2001) Surface display on Gram positive bacteria. Comb Chem High Throughput Screen 4:171–184Google Scholar
  7. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172CrossRefGoogle Scholar
  8. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105:39633967Google Scholar
  9. Hünten P, Costa-Riu N, Palm D, Lottspeich F, Benz R (2005) Identification and characterization of PorH, a new cell wall channel of Corynebacterium glutamicum. Biochim Biophys Acta 1715:25–36CrossRefGoogle Scholar
  10. Koffas M, Stephanopoulos G (2005) Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr Opin Biotechnol 16:361–366CrossRefGoogle Scholar
  11. Leuchtenberger W, Klaus H (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8CrossRefGoogle Scholar
  12. Lichtinger T, Riess FG, Burkovski A, Engelbrecht F, Hesse D, Kratzin HD, Krämer R, Benz R (2001) The low-molecular-mass subunit of the cell wall channel of the Gram-positive Corynebacterium glutamicum. Immunological localization, cloning and sequencing of its gene porA. Eur J Biochem 268:462–469Google Scholar
  13. Liu J, Barry CE 3rd, Besra GS, Nikaido H (1996) Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551CrossRefGoogle Scholar
  14. Maurer J, Jose J, Meyer TF (1997) Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J Bacteriol 179:794–804Google Scholar
  15. Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J 19:4473–4484CrossRefGoogle Scholar
  16. Narita J, Okano K, Kitao T, Ishida S, Sewaki T, Sung MH, Fukuda H, Kondo A (2006) Display of α-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch. Appl Environ Microbiol 72:269–275CrossRefGoogle Scholar
  17. Navarre WW, Schneewind O (1994) Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Mol Microbiol 14:115–121CrossRefGoogle Scholar
  18. Nikaido H, Kim SH, Rosenberg EY (1993) Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol Microbiol 8:1025–1030CrossRefGoogle Scholar
  19. Puech V, Chami M, Lemassu A, Lanéelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffé M (2001) Structure of the cell envelope of corynebacteria: importance of the noncovalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382Google Scholar
  20. Samuelson P, Gunneriusson E, Nygren PA, Ståhl S (2002) Display of proteins on bacteria. J Biotechnol 96:129–154CrossRefGoogle Scholar
  21. Tateno T, Fukuda H, Kondo A (2007a) Production of L-lysine from starch by Corynebacterium glutamicum displaying α-amylase on its cell surface. Appl Microbiol Biotechnol 74:1213–1220CrossRefGoogle Scholar
  22. Tateno T, Fukuda H, Kondo A (2007b) Direct production of l-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol 77:533–541CrossRefGoogle Scholar
  23. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82:115–121CrossRefGoogle Scholar
  24. Taylor IM, Harrison JL, Timmis KN, O’Connor CD (1990) The TraT lipoprotein as a vehicle for the transport of foreign antigenic determinants to the cell surface of Escherichia coli K12: structure function relationships in the TraT protein. Mol Microbiol 4:1259–1268CrossRefGoogle Scholar
  25. Westerlund-Wikström B, Tanskanen J, Virkola R, Hacker J, Lindberg M, Skurnik M, Korhonen TK (1997) Functional expression of adhesive peptides as fusions to Escherichia coli flagellin. Protein Eng 10:1319–1326CrossRefGoogle Scholar
  26. Xu Z, Lee SY (1999) Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl Environ Microbiol 65:5142–5147Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Toshihiro Tateno
    • 1
  • Kazuki Hatada
    • 2
  • Tsutomu Tanaka
    • 3
  • Hideki Fukuda
    • 3
  • Akihiko Kondo
    • 4
  1. 1.Department of Molecular Science and Material Engineering, Graduate School of Science and TechnologyKobe UniversityKobeJapan
  2. 2.Department of Chemical Science and Engineering, Faculty of EngineeringKobe UniversityKobeJapan
  3. 3.Organization of Advanced Science and TechnologyKobe UniversityKobeJapan
  4. 4.Department of Chemical Science and Engineering, Graduate School of EngineeringKobe UniversityKobeJapan

Personalised recommendations