Advertisement

Applied Microbiology and Biotechnology

, Volume 84, Issue 5, pp 885–897 | Cite as

Molecular characterization of aromatic peroxygenase from Agrocybe aegerita

  • Marek J. Pecyna
  • René Ullrich
  • Britta Bittner
  • André Clemens
  • Katrin Scheibner
  • Roland Schubert
  • Martin Hofrichter
Biotechnologically relevant enzymes and proteins

Abstract

Recently, a novel group of fungal peroxidases, known as the aromatic peroxygenases (APO), has been discovered. Members of these extracellular biocatalysts produced by agaric basidiomycetes such as Agrocybe aegerita or Coprinellus radians catalyze reactions—for example, the peroxygenation of naphthalene, toluene, dibenzothiophene, or pyridine—which are actually attributed to cytochrome P450 monooxygenases. Here, for the first time, genetic information is presented on this new group of peroxide-consuming enzymes. The gene of A. aegerita peroxygenase (apo1) was identified on the level of messenger RNA and genomic DNA. The gene sequence was affirmed by peptide sequences obtained through an Edman degradation and de novo peptide sequencing of the purified enzyme. Quantitative real-time reverse transcriptase polymerase chain reaction demonstrated that the course of enzyme activity correlated well with that of mRNA signals for apo1 in A. aegerita. The full-length sequences of A. aegerita peroxygenase as well as a partial sequence of C. radians peroxygenase confirmed the enzymes’ affiliation to the heme-thiolate proteins. The sequences revealed no homology to classic peroxidases, cytochrome P450 enzymes, and only little homology (<30%) to fungal chloroperoxidase produced by the ascomycete Caldariomyces fumago (and this only in the N-terminal part of the protein comprising the heme-binding region and part of the distal heme pocket). This fact reinforces the novelty of APO proteins. On the other hand, homology retrievals in genetic databases resulted in the identification of various APO homologous genes and transcripts, particularly among the agaric fungi, indicating APO’s widespread occurrence in the fungal kingdom.

Keywords

Peroxygenase Chloroperoxidase Cytochrome P450 Heme-thiolate Oxygenation Coprinellus 

Notes

Acknowledgments

We gratefully acknowledge the financial support from the German Environmental Foundation (Deutsche Bundesstiftung Umwelt; M.P., M.H.; grant 13225-32), the German Research Foundation (Deutsche Forschungsgemeinschaft; M.P., M.H.; grant HO1961/4-1), and the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung; R.U., A.C., R.S., K.S., M.H.; grant 0313433D). We would like to thank Mss. U. Schneider, H. Hohlfeld, M. Brandt, and S. Schimpke for their excellent technical assistance and our colleagues E. Aranda, C. Liers, M. Kinne, M. Kluge (Inge), and R. Junek for fruitful discussions. Not least, we thank G. Gröbe for useful pieces of information on fungal cultivation.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Anh DH, Ullrich R, Benndorf D, Svatoś A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485CrossRefGoogle Scholar
  3. Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M (2009) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066CrossRefGoogle Scholar
  4. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305CrossRefGoogle Scholar
  5. Bennett-Lovsey RM, Herbert AD, Sternberg MJE, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70:611–625CrossRefGoogle Scholar
  6. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145CrossRefGoogle Scholar
  7. Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci U S A 93:1418–1422CrossRefGoogle Scholar
  8. Conesa A, van de Velde F, van Rantwijk F, Sheldon RA, van den Hondel CA, Punt PJ (2001) Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme. J Biol Chem 276:17635–17640CrossRefGoogle Scholar
  9. Cooper B, Neelam A, Campbell KB, Lee J, Liu G, Garrett WM, Scheffler B, Tucker ML (2007) Protein accumulation in the germinating Uromyces appendiculatus uredospore. Mol Plant Microbe Interact 20:857–866CrossRefGoogle Scholar
  10. Espagne E, Lespinet O, Malagnac F, da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Seguren B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Dequard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P (2008) The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 9:R77 Available via: http://genomebiology.com/2008/9/5/R77 CrossRefGoogle Scholar
  11. Felsenstein J (1989) PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166Google Scholar
  12. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  13. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A 85:8998–9002CrossRefGoogle Scholar
  14. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Clifton, NJ, pp 571–607Google Scholar
  15. González S, Pabón ML, Carulla J (2002) Effects of tannins on in vitro ammonia release and dry matter degradation of soybean meal. Arch Latinoam Prod Anim 10:97–101Google Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. Hane JK, Lowe RG, Solomon PS, Tan KC, Schoch CL, Spatafora JW, Crous PW, Kodira C, Birren BW, Galagan JE, Torriani SF, McDonald BA, Oliver RP (2007) Dothideomycete plant interactions illuminated by genome sequencing and EST analysis of the wheat pathogen Stagonospora nodorum. Plant Cell 19:3347–3368CrossRefGoogle Scholar
  18. Hofrichter M, Ullrich R (2006) Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 71:276–288CrossRefGoogle Scholar
  19. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJA (2008) The 20 years of PROSITE. Nucleic Acids Res 36(Database issue):D245–249. doi: 10.1093/nar/gkm977 Google Scholar
  20. Julenius K, Mølgaard A, Gupta R, Brunak S (2005) Prediction, conservation analysis and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15:153–164CrossRefGoogle Scholar
  21. Kincaid J, Stein P, Spiro TG (1979) Absence of heme-localized strain in T state hemoglobin: Insensitivity of heme-imidazole resonance Raman frequencies to quaternary structure. Proc Natl Acad Sci U S A 76:549–552CrossRefGoogle Scholar
  22. Kinne M, Ullrich R, Hammel KE, Hofrichter M (2008) Regioselective preparation of (R)-2-(4-hydroxyphenoxy) propionic acid with a fungal peroxygenase. Tetrahedron Lett 49:5950–5953CrossRefGoogle Scholar
  23. Kluge M, Ullrich R, Scheibner K, Hofrichter M (2007) Spectrophotometric assay for detection of aromatic hydroxylation catalyzed by fungal haloperoxidase–peroxygenase. Appl Microbiol Biotechnol 75:1473–1478CrossRefGoogle Scholar
  24. Kluge M, Ullrich R, Dolge C, Scheibner K, Hofrichter M (2009) Hydroxylation of naphthalene by aromatic peroxygenase from Agrocybe aegerita proceeds via oxygen transfer from H2O2 and intermediary epoxidation. Appl Microbiol Biotechnol 81:1071–1076CrossRefGoogle Scholar
  25. Lambilliotte R, Cooke R, Samson D, Fizames C, Gaymard F, Plassard C, Tatry MV, Berger C, Laudie M, Legeai F, Karsenty E, Delseny M, Zimmermann S, Sentenac H (2004) Large scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytol 164:505–513CrossRefGoogle Scholar
  26. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  27. Lee SH, Kim BG, Kim KJ, Lee JS, Yun DW, Hahn JH, Kim GH, Lee KH, Suh DS, Kwon ST, Lee CS, Yoo YB (2002) Comparative analysis of sequences expressed during the liquid-cultured mycelia and fruit body stages of Pleurotus ostreatus. Fungal Genet Biol 35:115–134CrossRefGoogle Scholar
  28. Matz M, Shagin D, Bogdanova E, Britanova O, Lukyanov S, Diatchenko L, Chenchik A (1999) Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res 27:1558–1560CrossRefGoogle Scholar
  29. Nikolcheva LG, Bärlocher F (2002) Phylogeny of Tetracladium based on 18S rDNA. Czech Mycol 53:285–295Google Scholar
  30. Omura T (2005) Heme-thiolate proteins. Biochem Biophys Res Commun 338:404–409CrossRefGoogle Scholar
  31. Ortiz de Montellano PRO (1992) Catalytic sites of hemoprotein peroxidases. Annu Rev Pharmacol Toxicol 32:89–107CrossRefGoogle Scholar
  32. Posada-Buitrago ML, Frederick RD (2005) Expressed sequence tag analysis of the soybean rust pathogen Phakopsora pachyrhizi. Fungal Genet Biol 42:949–962CrossRefGoogle Scholar
  33. Rychlik W, Rhoads RE (1989) A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res 17:8543–8551CrossRefGoogle Scholar
  34. Semova N, Storms R, John T, Gaudet P, Ulycznyj P, Min XJ, Sun J, Bulter G, Tsang A (2006) Generation, annotation, and analysis of an extensive Aspergillus niger EST collection. BMC Microbiol 6:7. doi: 10.1186/1471-2180-6-7 CrossRefGoogle Scholar
  35. Saloniemi H, Wähälä K, Nykänen-Kurki P, Kallela K, Saastamoinen I (1995) Phytoestrogen content and estrogenic effect of legume fodder. Proc Soc Exp Biol Med 208:13–17Google Scholar
  36. Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15:7155–7174CrossRefGoogle Scholar
  37. Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase-cytochrome P450 functional hybrid. Structure 3:1367–1377CrossRefGoogle Scholar
  38. Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581CrossRefGoogle Scholar
  39. Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579:6247–6250CrossRefGoogle Scholar
  40. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293CrossRefGoogle Scholar
  41. Ullrich R, Dolge C, Kluge M, Hofrichter M (2008) Pyridine as novel substrate for regioselective oxygenation with aromatic peroxygenase from Agrocybe aegerita. FEBS Lett 582:4100–4106CrossRefGoogle Scholar
  42. Wilkins MR, Lindskog I, Gasteiger E, Bairoch A, Sanchez J-C, Hochstrasser DF, Appel RD (1997) Detailed peptide characterisation using PEPTIDEMASS—a World-Wide Web accessible tool. Electrophoresis 18:403–408CrossRefGoogle Scholar
  43. Woodman ME (2008) Direct PCR of intact bacteria (colony PCR). Curr Protoc Microbiol Appendix 3:Appendix 3DGoogle Scholar
  44. Wu Q, Wang M, Simon JE (2004) Analytical methods to determine phytoestrogenic compounds. J Chromatogr B Analyt Technol Biomed Life Sci 812:325–355Google Scholar
  45. Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol R 63:405–445Google Scholar
  46. Zhou NY, Jenkins A, Chan Kwo Chion CK, Leak DJ (1999) The alkene monooxygenase from Xanthobacter strain Py2 is closely related to aromatic monooxygenases and catalyzes aromatic monohydroxylation of benzene, toluene, and phenol. Appl Environ Microbiol 65:1589–1595Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Marek J. Pecyna
    • 1
  • René Ullrich
    • 1
  • Britta Bittner
    • 2
  • André Clemens
    • 2
  • Katrin Scheibner
    • 3
  • Roland Schubert
    • 2
  • Martin Hofrichter
    • 1
  1. 1.Department of Environmental BiotechnologyInternational Graduate School (IHI) ZittauZittauGermany
  2. 2.Section of Mathematics and Natural SciencesUniversity of Applied SciencesZittauGermany
  3. 3.Section of Biotechnology, Chemistry and Process EngineeringLausitz University of Applied SciencesSenftenbergGermany

Personalised recommendations