Applied Microbiology and Biotechnology

, Volume 83, Issue 1, pp 35–41 | Cite as

Nootkatone—a biotechnological challenge

  • Marco A. Fraatz
  • Ralf G. Berger
  • Holger ZornEmail author


Due to its pleasant grapefruit-like aroma and various further interesting molecular characteristics, (+)-nootkatone represents a highly sought-after specialty chemical. (+)-Nootkatone is accumulated in its producer plants in trace amounts only, and the demand of the food, cosmetics and pharmaceutical industry is currently predominantly met by chemical syntheses. These typically require environmentally critical reagents, catalysts and solvents, and the final product must not be marketed as a “natural flavour” compound. Both the market pull and the technological push have thus inspired biotechnologists to open up more attractive routes towards natural (+)-nootkatone. The multifaceted approaches for the de novo biosynthesis or the biotransformation of the precursor (+)-valencene to (+)-nootkatone are reviewed. Whole-cell systems of bacteria, filamentous fungi and plants, cell extracts or purified enzymes have been employed. A prominent biocatalytic route is the allylic oxidation of (+)-valencene. It allows the production of natural (+)-nootkatone in high yields under mild reaction conditions. The first sequence data of (+)-valencene-converting activities have just become known.


Valencene Flavour Biosynthesis Bioconversion 



Financial support of the project “biotechnological production of natural (+)-nootkatone” (AZ 13187) by the “Deutsche Bundesstiftung Umwelt, DBU” is gratefully acknowledged.


  1. Andersen NH (1970) Biogenetic implications of the antipodal sesquiterpenes of vetiver oil. Phytochemistry 9:145–151CrossRefGoogle Scholar
  2. Baysal T, Demirdöven A (2007) Lipoxygenase in fruits and vegetables: a review. Enzyme Microb Technol 40:491–496CrossRefGoogle Scholar
  3. Bouwmeester HJ, de Kraker JW, Schurink M, Bino RJ, de Groot A, Franssen MCR (2007) Plant enzymes for bioconversion. US Patent Application 7214507Google Scholar
  4. Chappell J (2004) Valencene synthase—a biochemical magician and harbinger of transgenic aromas. Trends Plant Sci 9:266–269CrossRefGoogle Scholar
  5. Chappell J, Greenhagen B (2006) Novel sesquiterpene synthase gene and protein. US Patent Application 2006/218661Google Scholar
  6. Dastur KP (1973) A stereoselective approach to eremophilane sesquiterpenes. A synthesis of (±)-nootkatone. J Am Chem Soc 95:6509–6510CrossRefGoogle Scholar
  7. de Kraker J-W, Schurink M, Franssen MCR, König WA, de Groot A, Bouwmeester HJ (2003) Hydroxylation of sesquiterpenes by enzymes from chicory (Cichorium intybus L.) roots. Tetrahedron 59:409–418CrossRefGoogle Scholar
  8. del Río JA, Ortuño A, Puig DG, Iborra JL, Sabater F (1991) Accumulation of the sesquiterpenes nootkatone and valencene by callus cultures of Citrus paradisi, Citrus limonia and Citrus aurantium. Plant Cell Rep 10:410–413CrossRefGoogle Scholar
  9. del Río JA, Ortuño A, García-Puig D, Porras I, García-Lidón A, Sabater F (1992) Variations of nootkatone and valencene levels during the development of grapefruit. J Agric Food Chem 40:1488–1490CrossRefGoogle Scholar
  10. Dhavlikar RS, Albroscheit G (1973) Mikrobiologische Umsetzung von Terpenen: Valencen. Dragoco Rep 12:251–258Google Scholar
  11. Drawert F, Berger RG (1982) Über die Biogenese von Aromastoffen bei Pflanzen und Früchten. Chem Mikrobiol Technol Lebensm 7:143–147Google Scholar
  12. Drawert F, Berger RG, Godelmann R (1984) Regioselective biotransformation of valencene in cell suspension cultures of Citrus sp. Plant Cell Rep 3:37–40CrossRefGoogle Scholar
  13. Erdtman H, Hirose Y (1962) The chemistry of the natural order Cupressales. Acta Chem Scand 16:1311–1314CrossRefGoogle Scholar
  14. Fisher C, Scott TR (1997) Food flavours: biology and chemistry. Royal Society of Chemistry, Information Services, CambridgeGoogle Scholar
  15. Flamini G, Cioni PL, Morelli I (2003) Volatiles from leaves, fruits, and virgin oil from Olea europaea Cv. Olivastra Seggianese from Italy. J Agric Food Chem 51:1382–1386CrossRefGoogle Scholar
  16. Fraatz MA, Kopp SJL, Takenberg M, Krings U, Marx S, Berger RG, Zorn H (2008) Enzymatische Synthese von Nootkaton. German Patent Application; submittedGoogle Scholar
  17. Furusawa M, Hashimoto T, Noma Y, Asakawa Y (2005) Highly efficient production of nootkatone, the grapefruit aroma from valencene, by biotransformation. Chem Pharm Bull (Tokyo) 53:1513–1514CrossRefGoogle Scholar
  18. Haring HG, Rijkens F, Boelens H, van der Gen A (1972) Olfactory studies on enantiomeric eremophilane sesquiterpenoids. J Agric Food Chem 20:1018–1021CrossRefGoogle Scholar
  19. Huang R, Christenson PA, Labuda IM (2001) Process for the preparation of nootkatone by laccase catalysis. US Patent Application 6200786Google Scholar
  20. Hunter GLK, Brogden WB Jr (1965a) Conversion of valencene to nootkatone. J Food Sci 30:876–878CrossRefGoogle Scholar
  21. Hunter GLK, Brogden WB Jr (1965b) Analysis of the terpene and sesquiterpene hydrocarbons in some citrus oils. J Food Sci 30:383–387CrossRefGoogle Scholar
  22. Iny D, Pinsky A, Cojocoru M, Grossman S (1993) Lipoxygenase of Thermoactinomyces vulgaris, purification and characterization of reaction products. Int J Biochem 25:1313–1323CrossRefGoogle Scholar
  23. Kaspera R (2004) Oxyfunktionalisierung von Terpenkohlenwasserstoffen zu aromaaktiven Terpenoiden durch selektive Biokatalyse. Dissertation, Leibniz Universität, HannoverGoogle Scholar
  24. Kaspera R, Krings U, Nanzad T, Berger RG (2005) Bioconversion of (+)-valencene in submerged cultures of the ascomycete Chaetomium globosum. Appl Microbiol Biotechnol 67:477–483CrossRefGoogle Scholar
  25. Kelsey RG, Hennon PE, Huso M, Karchesy JJ (2005) Changes in heartwood chemistry of dead yellow-cedar trees that remain standing for 80 years or more in southeast Alaska. J Chem Ecol 31:2653–2670CrossRefGoogle Scholar
  26. Kosjek B, Stampfer W, van Deursen R, Faber K, Kroutil W (2003) Efficient production of raspberry ketone via ‘green’ biocatalytic oxidation. Tetrahedron 59:9517–9521CrossRefGoogle Scholar
  27. Kuhn H, Thiele BJ (1999) The diversity of the lipoxygenase family: many sequence data but little information on biological significance. FEBS Lett 449:7–11CrossRefGoogle Scholar
  28. Kuribayashi T, Kaise H, Uno C, Hara T, Hayakawa T, Joh T (2002) Purification and characterization of lipoxygenase from Pleurotus ostreatus. J Agric Food Chem 50:1247–1253CrossRefGoogle Scholar
  29. Lynen F (1967) Biosynthetic pathways from acetate to natural products. Pure Appl Chem 14:137–167CrossRefGoogle Scholar
  30. MacLeod WD Jr, Buigues NM (1964) Sesquiterpenes. I. Nootkatone, a new grapefruit flavor constituent. J Food Sci 29:565–568CrossRefGoogle Scholar
  31. MacLeod AJ, MacLeod G, Subramanian G (1988) Volatile aroma constituents of celery. Phytochemistry 27:373–375CrossRefGoogle Scholar
  32. Majetich G, Behnke M, Hull K (1985) A stereoselective synthesis of (±)-nootkatone and (±)-valencene via an intramolecular Sakurai reaction. J Org Chem 50:3615–3618CrossRefGoogle Scholar
  33. Marshall JA, Ruden RA (1971) The stereoselective total synthesis of racemic nootkatone. J Org Chem 36:594–596CrossRefGoogle Scholar
  34. Miyazawa M, Watanabe H, Kameoka H (1997) Inhibition of acetylcholinesterase activity by monoterpenoids with a p-menthane skeleton. J Agric Food Chem 45:677–679CrossRefGoogle Scholar
  35. Miyazawa M, Nakamura Y, Ishikawa Y (2000) Insecticidal sesquiterpene from Alpinia oxyphylla against Drosophila melanogaster. J Agric Food Chem 48:3639–3641CrossRefGoogle Scholar
  36. Miyazawa M, Tougo H, Ishihara M (2001) Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi. Nat Prod Lett 15:205–210Google Scholar
  37. Muller B, Dean C, Schmidt C, Kuhn J-C (1998) Process for the preparation of nootkatone. US Patent Application 5847226Google Scholar
  38. Murase T, Minegishi Y (2007) AMPK activating agent. US Patent Application 2007/0054965Google Scholar
  39. Njoroge SM, Mungai HN, Koaze H, Phi NTL, Sawamura M (2006) Volatile constituents of mandarin (Citrus reticulata blanco) peel oil from Burundi. J Essent Oil Res 18:659–662Google Scholar
  40. Ohloff G (1971) Präparative Möglichkeiten mit Singulettsauerstoff. Nachr Chem Techn 24:446–448Google Scholar
  41. Okuda M, Sonohara H, Takigawa H, Tajima K, Ito S (1994) Nootkatone manufacture with Rhodococcus from valencene. Japanese Patent Application 06303967AGoogle Scholar
  42. Ortuño A, García-Puig D, Fuster MD, Pérez ML, Sabater F, Porras I, García-Lidón A, del Río JA (1995) Flavanone and nootkatone levels in different varieties of grapefruit and pummelo. J Agric Food Chem 43:1–5CrossRefGoogle Scholar
  43. Panella NA, Dolan MC, Karchesy JJ, Xiong Y, Peralta-Cruz J, Khasawneh M, Montenieri JA, Maupin GO (2005) Use of novel compounds for pest control: insecticidal and acaricidal activity of essential oil components from heartwood of Alaska yellow cedar. J Med Entomol 42:352–358CrossRefGoogle Scholar
  44. Pesaro M, Bozzato G, Schudel P (1968) Total synthesis of racemic nootkatone. Chem Commun (London) 19:1152–1154CrossRefGoogle Scholar
  45. Reil G, Berger RG (1996) Accumulation of chlorophyll and essential oils in photomixotrophic cell cultures of Citrus sp. Z Naturforsch, C. J Biosci 51:657–666Google Scholar
  46. Reil G, Berger RG (1997) Variation of chlorophyll and essential oils in photomixotrophic cell cultures of Coleonema album (Thunb.). J Plant Physiol 150:160–166Google Scholar
  47. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574CrossRefGoogle Scholar
  48. Roussis V, Vagias C, Tsitsimpikou C, Diamantopoulou N (2000) Chemical variability of the volatile metabolites from the Caribbean corals of the genus Gorgonia. Z Naturforsch, C. J Biosci 55:431–441Google Scholar
  49. Sakamaki H, K-i I, Taniai T, Kitanaka S, Takagi Y, Chai W, Horiuchi CA (2005) Biotransformation of valencene by cultured cells of Gynostemma pentaphyllum. J Mol Catal B Enzym 32:103–106CrossRefGoogle Scholar
  50. Salvador JAR, Clark JH (2002) The allylic oxidation of unsaturated steroids by tert-butyl hydroperoxide using surface functionalised silica supported metal catalysts. Green Chem 4:352–356CrossRefGoogle Scholar
  51. Sauer AM, Crowe WE, Laine RA, Henderson G (2006) Efficient and economic asymmetric synthesis of nootkatone, tetrahydronootkatone, their precursors and derivatives. US Patent Application 7112700Google Scholar
  52. Sawamura M, Kuriyama T (1988) Quantitative determination of volatile constituents in the pummelo (Citrus grandis Osbeck forma Tosa-buntan). J Agric Food Chem 36:567–569CrossRefGoogle Scholar
  53. Schulte-Elte K-H, Fracheboud MG, Ohloff G (1974) Procédé pour la préparation d’une cétone bicyclique. Swiss Patent Application 541533Google Scholar
  54. Shaffer GW, Eschinasi EH, Purzycki KL, Doerr AB (1975) Oxidations of valencene. J Org Chem 40:2181–2185CrossRefGoogle Scholar
  55. Sharon-Asa L, Shalit M, Frydman A, Bar E, Holland D, Or E, Lavi U, Lewinsohn E, Eyal Y (2003) Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. Plant J 36:664–674CrossRefGoogle Scholar
  56. Shoji N, Umeyama A, Asakawa Y, Takemoto T, Nomoto K, Ohizumi Y (1984) Structural determination of nootkatol, a new sesquiterpene isolated from Alpinia oxyphylla Miquel possessing calcium-antagonistic activity. J Pharm Sci 73:843–844CrossRefGoogle Scholar
  57. Sowden RJ, Yasmin S, Rees NH, Bell SG, Wong L-L (2005) Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3. Org Biomol Chem 3:57–64CrossRefGoogle Scholar
  58. Takahashi S, Yeo Y-S, Zhao Y, O’Maille PE, Greenhagen BT, Noel JP, Coates RM, Chappell J (2007) Functional characterization of premnaspirodiene oxygenase, a cytochrome p450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. J Biol Chem 282:31744–31754CrossRefGoogle Scholar
  59. Tassaneeyakul W, Guo L-Q, Fukuda K, Ohta T, Yamazoe Y (2000) Inhibition selectivity of grapefruit juice components on human cytochromes p450. Arch Biochem Biophys 378:356–363CrossRefGoogle Scholar
  60. Torii S, Inokuchi T, Handa K (1982) Functionalization of trans-decalin. V. A synthesis of (±)-nootkatone and (±)-valencene from 4β,4aβ-dimethyl-Δ6,7-octalin-1-one ethylene acetal. Bull Chem Soc Jpn 55:887–890CrossRefGoogle Scholar
  61. van Brink HM, van Gorcom RF, van den Hondel CA, Punt PJ (1998) Cytochrome P450 enzyme systems in fungi. Fungal Genet Biol 23:1–17CrossRefGoogle Scholar
  62. Willershausen H, Graf H (1991) Enzymatische Transformation von Valencen zu Nootkaton. Chemiker-Zeitung 115:358–360Google Scholar
  63. Wilson CWIII, Shaw PE (1978) Synthesis of nootkatone from valencene. J Agric Food Chem 26:1430–1432CrossRefGoogle Scholar
  64. Wu S, Schoenbeck MA, Greenhagen BT, Takahashi S, Lee S, Coates RM, Chappell J (2005) Surrogate splicing for functional analysis of sesquiterpene synthase genes. Plant Physiol 138:1322–13333CrossRefGoogle Scholar
  65. Yanami T, Miyashita M, Yoshikoshi A (1980) Synthetic study of (+)-nootkatone from (-)-β-pinene. J Org Chem 45:607–612CrossRefGoogle Scholar
  66. Zhu BCR, Henderson G, Chen F, Maistrello L, Laine RA (2001) Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus). J Chem Ecol 27:523–531CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Marco A. Fraatz
    • 1
  • Ralf G. Berger
    • 2
  • Holger Zorn
    • 1
    Email author
  1. 1.Institute of Food Chemistry and Food BiotechnologyJustus Liebig University GiessenGiessenGermany
  2. 2.Institute of Food ChemistryLeibniz University HannoverHannoverGermany

Personalised recommendations