Applied Microbiology and Biotechnology

, Volume 83, Issue 1, pp 161–173

Chemical characterization of soil extract as growth media for the ecophysiological study of bacteria

  • Manuel Liebeke
  • Volker S. Brözel
  • Michael Hecker
  • Michael Lalk
Applied Microbial and Cell Physiology


We investigated the composition of soil-extracted solubilized organic and inorganic matter (SESOM) prepared from three different soils. Growth of various bacterial strains in these soil extracts was evaluated to find appropriate conditions for ecophysiological approaches. Analysis of SESOM by 1H-NMR and gas chromatography/mass spectrometry revealed a complex mixture of organic compounds. An oak forest SESOM supported the growth of several gram-positive and gram-negative soil-derived heterotrophic bacteria, whereas beech forest and grassland soil extracts did not. A metabolomic approach was performed by determining the extracellular metabolite profile of Bacillus licheniformis in SESOM. The results demonstrated that determination of the organic composition of SESOM during batch culturing is feasible. This makes SESOM amenable to studying the ecophysiology of a range of soil bacteria growing on soil-dissolved organic matter under more defined laboratory conditions. SESOM may also increase success in isolating previously uncultured or novel soil bacteria. Cell populations and the corresponding extracellular medium can be obtained readily and specific components extracted, paving the way for proteomic, transcriptomic, and metabolomic analyses. The synthetic carbon mixture based on SESOM, which mimics soil abilities, shows a positive impact on higher cell yields and longer cultivation time for biotechnological relevant bacteria.


Dissolved organic matter Gas chromatography/mass spectrometry (GC-MS) Nuclear magnetic resonance (NMR) Growth medium SESOM Soil bacteria Metabolomics 

Supplementary material

253_2009_1965_MOESM1_ESM.doc (222 kb)
Fig. S1Growth of Bacillus licheniformis DSM 13 in synthetic media and appending metabolite concentrations [in millimolars] of culture supernatants (determined by 1H-NMR measurements) for M9 medium with a carbon source cocktail in low concentrations (a) and high concentrations (b). Also displayed is growth in M9 medium with glucose in low concentrations (c) and high concentrations (d) as carbon source. All experiments were done in triplicate and a representative experiment is shown (DOC 221 kb)


  1. Allard B (2006) A comparative study on the chemical composition of humic acids from forest soil, agricultural soil and lignite deposit—bound lipid, carbohydrate and amino acid distributions. Geoderma 130(1–2):77–96CrossRefGoogle Scholar
  2. Amelung W, Zhang X (2001) Determination of amino acid enantiomers in soils. Soil Biol Biochem 33(4–5):553–562CrossRefGoogle Scholar
  3. Bakken LR (1985) Separation and purification of bacteria from soil. Appl Environ Microbiol 49(6):1482–1487Google Scholar
  4. Benndorf D, Balcke GU, Harms H, Von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 1(3):224–234CrossRefGoogle Scholar
  5. Bollmann A, Lewis K, Epstein SS (2007) Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73(20):6386–6390CrossRefGoogle Scholar
  6. Bunk B, Kucklick M, Jonas R, Munch R, Schobert M, Jahn D, Hiller K (2006) MetaQuant: a tool for the automatic quantification of GC/MS-based metabolome data. Bioinformatics 22(23):2962–2965CrossRefGoogle Scholar
  7. Burke L, Brozel V, Venter S (2008) Construction and evaluation of a gfp-tagged Salmonella Typhimurium strain for environmental applications. Water SA 34(1):19–24Google Scholar
  8. Daniel R (2004) The soil metagenome—a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15(3):199–204CrossRefGoogle Scholar
  9. Davis KE, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71(2):826–834CrossRefGoogle Scholar
  10. de Souza ML, Wackett LP, Boundy-Mills KL, Mandelbaum RT, Sadowsky MJ (1995) Cloning, characterization, and expression of a gene region from Pseudomonas sp. strain ADP involved in the dechlorination of atrazine. Appl Environ Microbiol 61(9):3373–3378Google Scholar
  11. Ellis RJ (2004) Artificial soil microcosms: a tool for studying microbial autecology under controlled conditions. J Microbiol Methods 56(2):287–290CrossRefGoogle Scholar
  12. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103(3):626–631CrossRefGoogle Scholar
  13. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364CrossRefGoogle Scholar
  14. Fischer H, Meyer A, Fischer K, Kuzyakov Y (2007) Carbohydrate and amino acid composition of dissolved organic matter leached from soil. Soil Biol Biochem 39(11):2926–2935CrossRefGoogle Scholar
  15. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309(5739):1387–1390CrossRefGoogle Scholar
  16. Hafner SD, Groffman PM, Mitchell MJ (2005) Leaching of dissolved organic carbon, dissolved organic nitrogen, and other solutes from coarse woody debris and litter in a mixed forest in New York State. Biogeochemistry 74(2):257–282CrossRefGoogle Scholar
  17. Hochgrafe F, Wolf C, Fuchs S, Liebeke M, Lalk M, Engelmann S, Hecker M (2008) Nitric oxide stress induces different responses but mediates comparable protein thiol protection in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 190(14):4997–5008CrossRefGoogle Scholar
  18. Hoi LT, Voigt B, Jurgen B, Ehrenreich A, Gottschalk G, Evers S et al (2006) The phosphate-starvation response of Bacillus licheniformis. Proteomics 6(12):3582–3601CrossRefGoogle Scholar
  19. Huang Y, Eglinton G, Van der Hage ERE, Boon JJ, Bol R, Ineson P (1998) Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques. Eur J Soil Sci 49(1):1–15CrossRefGoogle Scholar
  20. James N (1958) Soil extract in soil microbiology. Can J Microbiol 4(4):363–370CrossRefGoogle Scholar
  21. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69(12):7210–7215CrossRefGoogle Scholar
  22. Kaiser K, Guggenberger G, Haumaier L, Zech W (2001) Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany. Biogeochemistry 55(2):103–143CrossRefGoogle Scholar
  23. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics dissolved organic matter in soils: a review. Soil Sci 165(4):277–304CrossRefGoogle Scholar
  24. Kovats E (1958) Gas-Chromatographische Charakterisierung Organischer Verbindungen .1. Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde Und Ketone. Helv Chim Acta 41(7):1915–1932CrossRefGoogle Scholar
  25. Liebeke M, Pother DC, van Duy N, Albrecht D, Becher D, Hochgrafe F et al (2008) Depletion of thiol-containing proteins in response to quinones in Bacillus subtilis. Mol Microbiol 69(6):1513–1529CrossRefGoogle Scholar
  26. Luo Y, Vilain S, Voigt B, Albrecht D, Hecker M, Brozel VS (2007) Proteomic analysis of Bacillus cereus growing in liquid soil organic matter. FEMS Microbiol Lett 271(1):40–47CrossRefGoogle Scholar
  27. Makita M, Yamamoto S, Kono M (1976) Gas–liquid chromatographic analysis of protein amino acids as N-isobutyloxycarbonylamino acid methyl esters. J Chromatogr 120(1):129–140CrossRefGoogle Scholar
  28. Mongodin EF, Shapir N, Daugherty SC, DeBoy RT, Emerson JB, Shvartzbeyn A et al (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2(12):e214CrossRefGoogle Scholar
  29. Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC (1995) 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem 67(5):793–811CrossRefGoogle Scholar
  30. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740CrossRefGoogle Scholar
  31. Paliy O, Gunasekera TS (2007) Growth of E. coli BL21 in minimal media with different gluconeogenic carbon sources and salt contents. Appl Microbiol Biotechnol 73(5):1169–1172CrossRefGoogle Scholar
  32. Palmer KL, Mashburn LM, Singh PK, Whiteley M (2005) Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187(15):5267–5277CrossRefGoogle Scholar
  33. Palmer KL, Aye LM, Whiteley M (2007) Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189(22):8079–8087CrossRefGoogle Scholar
  34. Pizzeghello D, Zanella A, Carletti P, Nardi S (2006) Chemical and biological characterization of dissolved organic matter from silver fir and beech forest soils. Chemosphere 65(2):190–200CrossRefGoogle Scholar
  35. Radajewski S, McDonald IR, Murrell JC (2003) Stable-isotope probing of nucleic acids: a window to the function of uncultured microorganisms. Curr Opin Biotechnol 14(3):296–302CrossRefGoogle Scholar
  36. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394CrossRefGoogle Scholar
  37. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49(1):1–7Google Scholar
  38. Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH Jr, Stulke J (1999) Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 145:3419–3429CrossRefGoogle Scholar
  39. Sandnes A, Eldhuset TD, Wollebaek G (2005) Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol Biochem 37(2):259–269CrossRefGoogle Scholar
  40. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3(6):479–488CrossRefGoogle Scholar
  41. Schloss PD, Handelsman J (2006) Toward a census of bacteria in soil. PLoS Comput Biol 2(7):e92CrossRefGoogle Scholar
  42. Sharma PD (2005) Terrestial environments. In Environmental Microbiology. Alpha Science International, Harrow, Middlesex, UK, pp 27–51Google Scholar
  43. Shivaji S, Suresh K, Chaturvedi P, Dube S, Sengupta S (2005) Bacillus arsenicus sp nov., an arsenic-resistant bacterium isolated from a sidente concretion in West Bengal, India. Int J Syst Evol Microbiol 55:1123–1127CrossRefGoogle Scholar
  44. Shivers RP, Dineen SS, Sonenshein AL (2006) Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Mol Microbiol 62(3):811–822CrossRefGoogle Scholar
  45. Stotzky G, Burns RG (1982) The soil environment: clay–humus–microbe interactions. In: Burns RG, Slater JH (eds) Experimental microbial ecology. Blackwell Scientific Publishing, Oxford, p 100110Google Scholar
  46. Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—a review. Geoderma 99(3–4):169–198CrossRefGoogle Scholar
  47. Stulke J, Hanschke R, Hecker M (1993) Temporal activation of beta-glucanase synthesis in Bacillus subtilis is mediated by the Gtp pool. J Gen Microbiol 139:2041–2045Google Scholar
  48. Tobisch S, Zuhlke D, Bernhardt J, Stulke J, Hecker M (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 181(22):996–7004Google Scholar
  49. Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5(3):240–245CrossRefGoogle Scholar
  50. Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microb 56(3):782–787Google Scholar
  51. Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296(5570):1064–1066CrossRefGoogle Scholar
  52. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW et al (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557CrossRefGoogle Scholar
  53. Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3(6):e2527CrossRefGoogle Scholar
  54. van Hees PAW, Jones DL, Finlay R, Godbold DL, Lundstomd US (2005) The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol Biochem 37(1):1–13CrossRefGoogle Scholar
  55. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P et al (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7(4):204–211CrossRefGoogle Scholar
  56. Vilain S, Luo Y, Hildreth MB, Brozel VS (2006) Analysis of the life cycle of the soil saprophyte Bacillus cereus in liquid soil extract and in soil. Appl Environ Microb 72(7):4970–4977CrossRefGoogle Scholar
  57. Voigt B, Hoi LT, Jurgen B, Albrecht D, Ehrenreich A, Veith B et al (2007) The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics 7(3):413–423CrossRefGoogle Scholar
  58. Watanabe K, Imase M, Aoyagi H, Ohmura N, Saiki H, Tanaka H (2008) Development of a novel artificial medium based on utilization of algal photosynthetic metabolites by symbiotic heterotrophs. J Appl Microbiol 105(3):741–751CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Manuel Liebeke
    • 1
  • Volker S. Brözel
    • 2
  • Michael Hecker
    • 3
  • Michael Lalk
    • 1
  1. 1.Department of Pharmaceutical BiologyErnst-Moritz-Arndt University of GreifswaldGreifswaldGermany
  2. 2.Department of Biology and MicrobiologySouth Dakota State UniversityBrookingsUSA
  3. 3.Department of MicrobiologyErnst-Moritz-Arndt University of GreifswaldGreifswaldGermany

Personalised recommendations