Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Functional characterization of the trigger factor protein PceT of tetrachloroethene-dechlorinating Desulfitobacterium hafniense Y51

  • 260 Accesses

  • 20 Citations


Desulfitobacterium hafniense strain Y51 dechlorinates tetrachloroethene to cis-1,2-dichloroethene (cis-DCE) via trichloroethene by the action of the PceA reductive dehalogenase encoded by pceA. The pceA gene constitutes a gene cluster with pceB, pceC, and pceT. However, the gene components, except for pceA, still remained to be characterized. In the present study, we characterized the function of PceT. PceT of strain Y51 showed a sequence homology with trigger factor proteins, although it is evolutionally distant from the well-characterized trigger factor protein of Escherichia coli. The PceT protein tagged with 6x histidine was expressed as a soluble form in E. coli. The recombinant PceT fusion protein exhibited peptidyl-proryl cistrans isomerase activity toward the chromogenic peptide N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The PceT fusion protein also exhibited chaperon activity towards the chemically denatured citrate synthase. Immunoprecipitation analysis using antibodies raised against PceA and PceT demonstrated that PceT specifically binds to the precursor form of PceA with an N-terminal twin-arginine translocation (TAT) signal sequence. On the other hand, PceT failed to bind the mature form of PceA that lost the TAT signal sequence. This is the first report in dehalorespiring bacteria, indicating that PceT is responsible for the correct folding of the precursor PceA.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Buchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmid FX, Kiefhaber T (1991) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30:1586–1591

  2. Cuypers H, Viebrock-Sambale A, Zumft WG (1992) NosR, a membrane-bound regulatory component necessary for expression of nitrous oxide reductase in denitrifying Pseudomonas stutzeri. J Bacteriol 174:5332–5339

  3. Damborsky J (1999) Tetrachloroethene-dehalogenating bacteria. Folia Microbiol 44:247–262

  4. Furukawa K, Suyama A, Tsuboi Y, Futagami T, Goto M (2005) Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51: a review. J Ind Microbiol Biotechnol 32:534–541

  5. Futagami T, Tsuboi Y, Suyama A, Goto M, Furukawa K (2006a) Emergence of two types of nondechlorinating variants in the tetrachloroethene-halorespiring Desulfitobacterium sp. strain Y51. Appl Microbiol Biotechnol 70:720–728

  6. Futagami T, Yamaguchi T, Nakayama S, Goto M, Furukawa K (2006b) Effects of chloromethanes on growth of and deletion of the pce gene cluster in dehalorespiring Desulfitobacterium hafniense strain Y51. Appl Environ Microbiol 72:5998–6003

  7. Guthrie B, Wickner W (1990) Trigger factor depletion or overproduction causes defective cell division but does not block protein export. J Bacteriol 172:5555–5562

  8. Göthel SF, Schmid R, Wipat A, Carter NM, Emmerson PT, Harwood CR, Marahiel MA (1997) An internal FK506-binding domain is the catalytic core of the prolyl isomerase activity associated with the Bacillus subtilis trigger factor. Eur J Biochem 244:59–65

  9. Hatzixanthis K, Clarke TA, Oubrie A, Richardson DJ, Turner RJ, Sargent F (2005) Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc Natl Acad Sci USA 102:8460–8465

  10. Hesterkamp T, Deuerling E, Bukau B (1997) The amino-terminal 118 amino acids of Escherichia coli trigger factor constitute a domain that is necessary and sufficient for binding to ribosomes. J Biol Chem 272:21865–21871

  11. Holliger C, Schumacher W (1994) Reductive dechlorination as a respiratory process. Antonie Leeuwenhoek 66:239–246

  12. Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398

  13. Ilbert M, Méjean V, Giudici-Orticoni MT, Samama JP, Iobbi-Nivol C (2003) Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 278:28787–28792

  14. Lakshmipathy SK, Tomic S, Kaiser CM, Chang H-C H, Genevaux P, Georgopoulos C, Barral JM, Johnson AE, Hartl FU, Etchells SA (2007) Identification of nascent chain interaction sites on trigger factor. J Biol Chem 282:12186–12193

  15. Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395

  16. Lyon WR, Gibson CM, Caparon MG (1998) A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J 17:6263–6275

  17. Löffler FE, Edwards EA (2006) Harnessing microbial activities for environmental cleanup. Curr Opin Biotechnol 117:274–284

  18. Merz F, Hoffmann A, Rutkowska A, Zachmann-Brand B, Bukau B, Deuerling E (2006) The C-terminal domain of Escherichia coli trigger factor represents the central module of its chaperone activity. J Biol Chem 281:31963–31971

  19. Mohn WW, Tiedje JM (1992) Microbial reductive dechlorination. Microbiol Rev 56:482–507

  20. Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188:2262–2274

  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 4:406–425

  22. Scholz C, Schindler T, Dolinski K, Heitman J, Schmid FX (1997) Cyclophilin active site mutants have native prolyl isomerase activity with a protein substrate. FEBS Lett 414:69–73

  23. Smidt H, Akkermans ADL, van der Oost J, de Vos WM (2000) Halorespiring bacteria-molecular characterization and detection. Enz Microbial Technol 27:812–820

  24. Smidt H, de Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73

  25. Stoller G, Rücknagel KP, Nierhaus KH, Schmid FX, Fischer G, Rahfeld JU (1995) A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J 114:4939–4948

  26. Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K (2001) Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dechlorination of tetrachloroethene and polychloroethanes. Biosci Biotechnol Biochem 65:1474–1481

  27. Suyama A, Yamashita M, Yoshino S, Furukawa K (2002) Molecular characterization of the PceA reductive dehalogenase of Desulfitobacterium sp. strain Y51. J Bacteriol 184:3419–3425

  28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

  29. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

  30. Villemur R, Lanthier M, Beaudet R, Lépine F (2006) The Desulfitobacterium genus. FEMS Microbiol Rev 30:706–733

  31. Wohlfarth G, Diekert G (1997) Anaerobic dehalogenases. Curr Opin Biotechnol 8:290–295

  32. Wunsch P, Zumft WG (2005) Functional domains of NosR, a novel transmembrane iron-sulfur flavoprotein necessary for nitrous oxide respiration. J Bacteriol 187:1992–2001

Download references


We thank Drs. Shinya Sugimoto, Fuminori Yoneyama, and Kenji Sonomoto for light-scattering analysis. This work was supported in part by a Grant-in-aid (Hazardous Chemicals) from the Ministry of Agriculture, Forestry, and Fisheries of Japan (HC-04-2321-1).

Author information

Correspondence to Kensuke Furukawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morita, Y., Futagami, T., Goto, M. et al. Functional characterization of the trigger factor protein PceT of tetrachloroethene-dechlorinating Desulfitobacterium hafniense Y51. Appl Microbiol Biotechnol 83, 775–781 (2009). https://doi.org/10.1007/s00253-009-1958-z

Download citation


  • Desulfitobacterium hafniense
  • Dehalorespiring bacteria
  • Tetrachloroethene
  • PCE genes
  • Chaperon
  • Trigger factor