Applied Microbiology and Biotechnology

, Volume 83, Issue 6, pp 1045–1054 | Cite as

A periplasmic, pyridoxal-5′-phosphate-dependent amino acid racemase in Pseudomonas taetrolens

  • Daisuke Matsui
  • Tadao Oikawa
  • Noriaki Arakawa
  • Shintaro Osumi
  • Frank Lausberg
  • Norma Stäbler
  • Roland Freudl
  • Lothar Eggeling
Biotechnologically Relevant Enzymes and Proteins

Abstract

The pyridoxal-5′-phosphate (PLP)-dependent amino acid racemases occur in almost every bacterium but may differ considerably with respect to substrate specificity. We here isolated the cloned broad substrate specificity racemase ArgR of Pseudomonas taetrolens from Escherichia coli by classical procedures. The racemase was biochemically characterized and amongst other aspects it was confirmed that it is mostly active with lysine, arginine and ornithine, but merely weakly active with alanine, whereas the alanine racemase of the same organism studied in comparison acts on alanine only. Unexpectedly, sequencing the amino-terminal end of ArgR revealed processing of the protein, with a signal peptide cleaved off. Subsequent localization studies demonstrated that in both P. taetrolens and E. coli ArgR activity was almost exclusively present in the periplasm, a feature so far unknown for any amino acid racemase. An ArgR-derivative carrying a carboxy-terminal His-tag was made and this was demonstrated to localize even in an E. coli mutant devoid of the twin-arginine translocation (Tat) pathway in the periplasm. These data indicate that ArgR is synthesized as a prepeptide and translocated in a Tat-independent manner. We therefore propose that ArgR translocation depends on the Sec system and a post-translocational insertion of PLP occurs. As further experiments showed, ArgR is necessary for the catabolism of d-arginine and d-lysine by P. taetrolens.

Keywords

Racemase specificity Sec pathway Alanine racemase Lysine racemase Tat-translocation Periplasmic localization 

References

  1. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795CrossRefGoogle Scholar
  2. Blaudeck N, Kreutzenbeck P, Freudl R, Sprenger GA (2003) Genetic analysis of pathway specificity during posttranslational protein translocation across the Escherichia coli plasma membrane. J Bacteriol 185:2811–2819CrossRefGoogle Scholar
  3. Chen HP, Lin CF, Lee YJ, Tsay SS, Wu SH (2000) Purification and properties of ornithine racemase from Clostridium sticklandii. J Bacteriol 182:2052–2054CrossRefGoogle Scholar
  4. Craven GR, Steers E Jr, Anfinsen CB (1965) Purification, composition, and molecular weight of the beta-galactosidase of Escherichia coli K12. J Biol Chem 40:2468–2477Google Scholar
  5. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483CrossRefGoogle Scholar
  6. Inagaki K, Tanizawa K, Tanaka H, Soda K (1984) Purification and properties of amino acid racemase from Aeromonas punctata subsp. caviae. Prog Clin Biol Res 144A:355–363Google Scholar
  7. Kino K, Sato M, Yoneyama M, Kirimura K (2007) Synthesis of DL-tryptophan by modified broad specificity amino acid racemase from Pseudomonas putida IFO 12996. Appl Microbiol Biotechnol 73:1299–1305CrossRefGoogle Scholar
  8. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176CrossRefGoogle Scholar
  9. Kreutzenbeck P, Kröger C, Lausberg F, Blaudeck N, Sprenger GA, Freudl R (2007) Escherichia coli twin arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities. J Biol Chem 282:7903–7911CrossRefGoogle Scholar
  10. Lim YH, Yokoigawa K, Esaki N, Soda K (1993) A new amino acid racemase with threonine alpha-epimerase activity from Pseudomonas putida: purification and characterization. J Bacteriol 175:4213–4217Google Scholar
  11. Morita YS, Sena CB, Waller RF, Kurokawa K, Sernee MF, Nakatani F, Haites RE, Billman-Jacobe H, McConville MJ, Maeda Y, Kinoshita T (2006) PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem 281:25143–25155CrossRefGoogle Scholar
  12. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808CrossRefGoogle Scholar
  13. Oikawa T, Tauch A, Schaffer S, Fujioka T (2006) Expression of alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli and molecular characterization of the recombinant alanine racemase. J Biotechnol 125:503–512CrossRefGoogle Scholar
  14. Okubo Y, Yokoigawa K, Esaki N, Soda K, Kawai H (1999) Characterization of psychrophilic alanine racemase from Bacillus psychrosaccharolyticus. Biochem Biophys Res Commun 256:333–340CrossRefGoogle Scholar
  15. Ono K, Yanagida K, Oikawa T, Ogawa T, Soda K (2006) Alanine racemase of alfalfa seedlings (Medicago sativa L.): first evidence for the presence of an amino acid racemase in plants. Phytochemistry 67:856–860CrossRefGoogle Scholar
  16. Palmer T, Sargent F, Berks BC (2005) Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180CrossRefGoogle Scholar
  17. Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL (2005) Multiple and interconnected pathways for l-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 187:7500–7510CrossRefGoogle Scholar
  18. Roise D, Soda K, Yagi T, Walsh CT (1984) Inactivation of the Pseudomonas striata broad specificity amino acid racemase by d and l isomers of beta-substituted alanines: kinetics, stoichiometry, active site peptide, and mechanistic studies. Biochemistry 23:5195–5201CrossRefGoogle Scholar
  19. Schlesinger MJ, Olsen R (1968) Expression and localization of Escherichia coli alkaline phosphatase synthesized in Salmonella typhimurium cytoplasm. J Bacteriol 96:1601–1605Google Scholar
  20. Shi L, Deng S, Marshall MJ, Wang Z, Kennedy DW, Dohnalkova AC, Mottaz HM, Hill EA, Gorby YA, Beliaev AS, Richardson DJ, Zachara JM, Fredrickson JK (2008) Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J Bacteriol 190:5512–5516CrossRefGoogle Scholar
  21. Stalon V, Ramos F, Piérard A, Wiame JM (1967) The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochim Biophys Acta 139:91–97Google Scholar
  22. Strych U, Huang HC, Krause KL, Benedik MJ (2000) Characterization of the alanine racemases from Pseudomonas aeruginosa PAO1. Curr Microbiol 41:290–294CrossRefGoogle Scholar
  23. Wild J, Hennig J, Lobocka M, Walczak W, Kłopotowski T (1985) Identification of the dadX gene coding for the predominant isozyme of alanine racemase in Escherichia coli K12. Mol Gen Genet 198:15–22CrossRefGoogle Scholar
  24. Yagi T, Misono H, Kurihara N, Yamamoto T, Soda K (1980) l-Lysine: 2-oxoglutarate 6-aminotransferase. Subunit structure composed of non-identical polypeptides and pyridoxal 5'-phosphate-binding subunit. J Biochem 87:1395–1402Google Scholar
  25. Yamanishi Y, Mihara H, Osaki M, Muramatsu H, Esaki N, Sato T, Hizukuri Y, Goto S, Kanehisa M (2007) Prediction of missing enzyme genes in a bacterial metabolic network. Reconstruction of the lysine-degradation pathway of Pseudomonas aeruginosa. FEBS J 274:2262–2273CrossRefGoogle Scholar
  26. Yorifuji T, Ogata K (1971) Arginine racemase of Pseudomonas graveolens. I. Purification, crystallization, and properties. J Biol Chem 246:5085–5092Google Scholar
  27. Yorifuji T, Misono H, Soda K (1971) Arginine racemase of Pseudomonas graveolens. II. Racemization and transamination of ornithine catalyzed by arginine racemase. J Biol Chem 246:5093–5101Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Daisuke Matsui
    • 1
  • Tadao Oikawa
    • 1
  • Noriaki Arakawa
    • 1
  • Shintaro Osumi
    • 1
  • Frank Lausberg
    • 2
  • Norma Stäbler
    • 2
  • Roland Freudl
    • 2
  • Lothar Eggeling
    • 2
  1. 1.Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and BioengineeringKansai UniversitySuitaJapan
  2. 2.Institute of Biotechnology 1Forschungszentrum JuelichJuelichGermany

Personalised recommendations