Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Microbial and enzymatic control of pitch in the pulp and paper industry

  • 776 Accesses

  • 56 Citations

Abstract

Pitch control is an important aspect in pulp and paper manufacture, and the first example where microbial biotechnology provided successful solutions in this industrial sector. Triglycerides cause deposits in softwood mechanical pulping, and both microbial and enzymatic products have been commercialized to be applied on wood and pulp, respectively. The former are based on colorless strains of sapstain fungi. The latter are improved lipases, including thermostable variants from directed evolution. These enzymes are among the additives of choice in pulping of high-resin-content softwoods. However, lipases are not useful when pitch originates from other lipids, such as steroids and terpenes, and the sapstain inocula are also only partially effective. In the search for stronger biocatalysts to degrade recalcitrant lipids, the potential of white-rot fungi and their enzymes has been demonstrated. When inocula of these fungi are used, wood treatment must be controlled to avoid cellulose degradation. However, the efficiency and selectivity of the laccase-mediator system permits its integration as an additional bleaching stage. A double benefit can be obtained from these treatments since pitch is controlled at the same time that residual lignin is removed facilitating the implementation of totally chlorine free pulp bleaching.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akhtar M, Scott GM, Swaney RE, Shipley DF (2000) Biomechanical pulping: a mill-scale evaluation. Resour Conserv Recycl 28:241–252

  2. Allen LH (2000a) Pitch control in paper mills. In: Back EL, Allen LH (eds) Pitch control wood resin and deresination. TAPPI, Atlanta, pp 307–328

  3. Allen LH (2000b) Pitch control in pulp mills. In: Back EL, Allen LH (eds) Pitch control wood resin and deresination. TAPPI, Atlanta, pp 265–288

  4. Back EL (2000) The location and morphology of resin components in the wood. In: Back EL, Allen LH (eds) Pitch control wood resin and deresination. Tappi, Atlanta, pp 1–35

  5. Back EL, Allen LH (2000) Pitch control wood resin and deresination. TAPPI, Atlanta

  6. Bajpai P, Bajpai PK, Akhtar M, Jauhari MB (2001) Biokraft pulping of eucalyptus with selected lignin-degrading fungi. J Pulp Paper Sci 27:235–239

  7. Bergelin E, Holmbom B (2003) Deresination of birch kraft pulp in bleaching. J Pulp Paper Sci 29:29–34

  8. Bergelin E, Moller R, Holmbom B (2005) Analysis of pitch and deposit samples in kraft pulp production. Pap Puu-Pap Tim 87:399–403

  9. Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:S999–S1010

  10. Borch K, Franks N, Lund H, Xu H, Luo J (2003) Oxidizing enzymes in the manufacturing of paper materials. Patent (USA) US 2003/0124710 A1

  11. Bornscheuer U, Bessler C, Srinivas R, Hari KS (2002) Optimizing lipases and related enzymes for efficient application. Trends Biotechnol 20:433–437

  12. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

  13. Bourbonnais R, Paice MG (1996) Enzymatic delignification of kraft pulp using laccase and a mediator. Tappi J 79:199–204

  14. Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

  15. Brush T, Farrell RL, Ho C (1994) Biodegradation of wood extractives from Southern and Yellow pine by Ophiostoma piliferum. Tappi J 77:155–159

  16. Buchert J, Mustranta A, Tamminen T, Spetz P, Holmbom B (2002) Modification of spruce lignans with Trametes hirsuta laccase. Holzforschung 56:579–584

  17. Burnes TA, Blanchette RA, Farrell RL (2000) Bacterial biodegradation of extractives and patterns of bordered pit membrane attack in pine wood. Appl Environ Microbiol 66:5201–5205

  18. Calero-Rueda O, Gutiérrez A, del Río JC, Prieto A, Plou FJ, Ballesteros A, Martínez AT, Martínez MJ (2004) Hydrolysis of sterol esters by an esterase from Ophiostoma piceae: application for pitch control in pulping of Eucalyptus globulus wood. Intern J Biotechnol 6:367–375

  19. Call H-P (1994) Verfahren zur Veränderung, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen. Patent (International) WO 94/29510

  20. Camarero S, García O, Vidal T, Colom J, del Río JC, Gutiérrez A, Gras JM, Monje R, Martínez MJ, Martínez AT (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35:113–120

  21. Camarero S, Ibarra D, Martínez MJ, Martínez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784

  22. Chen T, Wang Z, Gao Y, Breuil C, Hatton JV (1994) Wood extractives and pitch problems: analysis and partial removal by biological treatment. Appita 47:463–466

  23. Chen T, Wang Z, Zhou Y, Breuil C, Aschim OK, Yee E, Nadeau L (1995) Using solid-phase extraction to assess why aspen causes more pitch problems than softwoods in kraft pulping. Tappi J 78:143–149

  24. Chen S, Lin Y, Zhang Y, Wang XH, Yang JL (2001) Enzymatic pitch control at Nanping paper mill. Tappi J 84:44–47

  25. del Río JC, Gutiérrez A (2006) Chemical composition of abaca (Musa textilis) leaf fibers used for manufacturing of high quality paper Pulps. J Agric Food Chem 54:4600–4610

  26. del Río JC, Gutiérrez A, González-Vila FJ, Martín F, Romero J (1998) Characterization of organic deposits produced in the Kraft pulping of Eucalyptus globulus wood. J Chromatogr 823:457–465

  27. del Río JC, Gutiérrez A, González-Vila FJ (1999) Analysis of impurities occurring in a totally-chlorine free-bleached Kraft pulp. J Chromatogr 830:227–232

  28. del Río JC, Romero J, Gutiérrez A (2000) Analysis of pitch deposits produced in Kraft pulp mills using a totally chlorine free bleaching sequence. J Chromatogr A 874:235–245

  29. Dorado J, Claassen FW, Lenon G, van Beek TA, Wijnberg JBPA, Sierra-Alvarez R (2000a) Degradation and detoxification of softwood extractives by sapstain fungi. Bioresource Technol 71:13–20

  30. Dorado J, Claassen FW, van Beek TA, Lenon G, Wijnberg JBPA, Sierra-Alvarez R (2000b) Elimination and detoxification of softwood extractives by white-rot fungi. J Biotechnol 80:231–240

  31. Dorado J, van Beek TA, Claassen FW, Sierra-Alvarez R (2001) Degradation of lipophilic wood extractive constituents in Pinus sylvestris by the white-rot fungi Bjerkandera sp. and Trametes versicolor. Wood Sci Technol 35:117–125

  32. Dubé E, Shareck F, Hurtubise Y, Beauregard M, Daneault C (2008) Enzyme-based approaches for pitch control in thermomechanical pulping of softwood and pitch removal in process water. J Chem Technol Biotechnol 83:1261–1266

  33. Eberhardt TL, Han JS, Micales JA, Young RA (1994) Decay resistance in conifer seed cones—role of resin acids as inhibitors of decomposition by white-rot fungi. Holzforschung 48:278–284

  34. Eggert C, Temp U, Dean JFD, Eriksson K-EL (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

  35. Ekman R (2000) Resin during storage and its biological treatment. In: Back EL, Allen LH (eds) Pitch control wood resin and deresination. Tappi, Atlanta, pp 185–204

  36. Ekman R, Holmbom B (2000) The chemistry of wood resin. In: Back EL, Allen LH (eds) Pitch control wood resin and deresination. TAPPI, Atlanta, pp 37–76

  37. Farrell RL (2007) Cartapip/SylvanexTM: Ophiostoma fungal product for commercial pulp and paper and solid wood applications. Proc 10 Intern Congr Biotechnology in the Pulp and Paper Industry, Madison, 10–14 June 63–64

  38. Farrell RL, Blanchette RA, Brush TS, Hadar Y, Iverson S, Krisa K, Wendler PA, Zimmerman W (1993) Cartapip™: a biopulping product for control of pitch and resin acid problems in pulp mills. J Biotechnol 30:115–122

  39. Fengel D, Wegener G (1984) Wood: Chemistry, ultrastructure reactions. De Gruyter, Berlin

  40. Fischer K, Messner K (1992a) Adsorption of lipase on pulp fibers during biological pitch control in paper industry. Enzyme Microb Technol 14:470–473

  41. Fischer K, Messner K (1992b) Biological pitch reduction of sulfite pulp on pilot scale. In: Kuwahara M, Shimada M (eds) Biotechnology in the pulp and paper industry. UNI, Kyoto, pp 169–174

  42. Fischer K, Puchinger L, Schloffer K (1993) Enzymatic pitch control of sulfite pulp on pilot scale. J Biotechnol 27:341–348

  43. Freire CSR, Silvestre AJD, Neto CP (2002) Identification of new hydroxy fatty acids and ferulic acid esters in the wood of Eucalyptus globulus. Holzforschung 56:143–149

  44. Freire CSR, Silvestre AJD, Neto CP (2005) Lipophilic extractives in Eucalyptus globulus kraft pulps. Behavior during ECF bleaching. J Wood Chem Technol 25:67–80

  45. Freire CSR, Silvestre AJD, Neto CP, Evtuguin DV (2006) Effect of oxygen, ozone and hydrogen peroxide bleaching stages on the contents and composition of extractives of Eucalyptus globulus kraft pulps. Bioresource Technol 97:420–428

  46. Fujita Y, Awaji H, Matsukura M, Hata K (1991) Enzymic pitch control in papermaking process. Kami Pa Gikyoshi 45:905–921

  47. Fujita Y, Awaji H, Taneda H, Matsukura M, Hata K, Shimoto H, Sharyo M, Sakaguchi H, Gibson K (1992) Recent advances in enzymic pitch control. Tappi J 75(4):117–122

  48. González-Vila FJ, Gutiérrez A, Martín F, Verdejo T (1997) Application of analytical pyrolysis to the characterization of Eucalyptus extractives and pitch deposits from a pulp mill. J Anal Appl Pyrolysis 40–41:501–510

  49. Gutiérrez A, del Río JC (2001) Gas chromatography-mass spectrometry demonstration of steryl glycosides in eucalypt wood, kraft pulp and process liquids. Rapid Commun Mass Spectrom 15:2515–2520

  50. Gutiérrez A, del Río JC (2003a) Lipids from flax fibers and their fate in alkaline pulping. J Agric Food Chem 51:4965–4971

  51. Gutiérrez A, del Río JC (2003b) Lipids from flax fibers and their fate in alkaline pulping (Vol 51, pg 4965, 2003). J Agric Food Chem 51:6911–6914

  52. Gutiérrez A, del Río JC (2005) Chemical characterization of pitch deposits produced in the manufacturing of high-quality paper pulps from hemp fibers. Bioresource Technol 96:1445–1450

  53. Gutiérrez A, Caramelo L, Prieto A, Martínez MJ, Martínez AT (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi from the genus Pleurotus. Appl Environ Microbiol 60:1783–1788

  54. Gutiérrez A, del Río JC, González-Vila FJ, Romero J (1998) Variation in the composition of wood extractives from Eucalyptus globulus during seasoning. J Wood Chem Technol 18:439–446

  55. Gutiérrez A, del Río JC, González-Vila FJ, Martín F (1999a) Chemical composition of lipophilic extractives from Eucalyptus globulus Labill. wood. Holzforschung 53:481–486

  56. Gutiérrez A, del Río JC, Martínez MJ, Martínez AT (1999b) Fungal degradation of lipophilic extractives in Eucalyptus globulus wood. Appl Environ Microbiol 65:1367–1371

  57. Gutiérrez A, Martínez MJ, del Río JC, Romero J, Canaval J, Lenon G, Martínez AT (2000) Fungal pretreatment of Eucalyptus wood can strongly decrease the amount of lipophilic extractives during chlorine-free kraft pulping. Environ Sci Technol 34:3705–3709

  58. Gutiérrez A, del Río JC, Martínez MJ, Martínez AT (2001a) The biotechnological control of pitch in paper pulp manufacturing. Trends Biotechnol 19:340–348

  59. Gutiérrez A, Romero J, del Río JC (2001b) Lipophilic extractives from Eucalyptus globulus pulp during kraft cooking followed by TCF and ECF bleaching. Holzforschung 55:260–264

  60. Gutiérrez A, Romero J, del Río JC (2001c) Lipophilic extractives in process waters during manufacturing of totally chlorine free kraft pulp from eucalypt wood. Chemosphere 44:1237–1242

  61. Gutiérrez A, Rodríguez IM, del Río JC (2004) Chemical characterization of lignin and lipid fractions in kenaf bast fibers used for manufacturing high-quality papers. J Agric Food Chem 52:4764–4773

  62. Gutiérrez A, del Río JC, Ibarra D, Rencoret J, Romero J, Speranza M, Camarero S, Martínez MJ, Martínez AT (2006a) Enzymatic removal of free and conjugated sterols forming pitch deposits in environmentally sound bleaching of eucalypt paper pulp. Environ Sci Technol 40:3416–3422

  63. Gutiérrez A, del Río JC, Rencoret J, Ibarra D, Martínez AT (2006b) Main lipophilic extractives in different paper pulp types can be removed using the laccase-mediator system. Appl Microbiol Biotechnol 72:845–851

  64. Gutiérrez A, del Río JC, Rencoret J, Ibarra D, Speranza AM, Camarero S, Martínez MJ, Martínez AT (2006c) Sistema enzima-mediador para el control de los depósitos de pitch en la fabricación de pasta y papel. Patent (International) PCT/ES06/070091

  65. Gutiérrez A, Rodríguez IM, del Río JC (2006d) Chemical characterization of lignin and lipid fractions in industrial hemp bast fibers used for manufacturing high-quality paper pulps. J Agric Food Chem 54:2138–2144

  66. Gutiérrez A, Rencoret J, Ibarra D, Molina S, Camarero S, Romero J, del Río JC, Martínez AT (2007) Removal of lipophilic extractives from paper pulp by laccase and lignin-derived phenols as natural mediators. Environ Sci Technol 41:4124–4129

  67. Gutiérrez A, Rodríguez IM, del Río JC (2008) Chemical composition of lipophilic extractives from sisal (Agave sisalana) fibers. Ind Crops Prod 28:81–87

  68. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

  69. Hata K, Matsukura M, Taneda H, Fujita Y (1996) Mill-scale application of enzymatic pitch control during paper production. In: Viikari L, Jeffries TW (eds) Enzymes for pulp and paper processing. ACS, Washington, pp 280–296

  70. Hata K, Matsukura M, Fujita Y, Toyota K, Taneda H (1998) Biodegradation of resin acids in pulp and paper industry: application of microorganisms and their enzymes. ACS Sym Ser 687:27–40

  71. Held BW, Thwaites JM, Farrell RL, Blanchette RA (2003) Albino strains of Ophiostoma species for biological control of sapstaining fungi. Holzforschung 57:237–242

  72. Ibarra D, Chávez MI, Rencoret J, del Río JC, Gutiérrez A, Romero J, Camarero S, Martínez MJ, Jimenez-Barbero J, Martínez AT (2007) Structural modification of eucalypt pulp lignin in a totally chlorine free bleaching sequence including a laccase-mediator stage. Holzforschung 61:634–646

  73. Jansson MB, Wormald P, Dahlman O (1995) Reactions of wood extractives during ECF and TCF bleaching of kraft pulp. Pulp Paper Can 96:T134–T137

  74. Josefsson P, Nilsson F, Sundstrom L, Norberg C, Lie E, Jansson MB, Henriksson G (2006) Controlled seasoning of Scots pine chips using an albino strain of Ophiostoma. Industrial & Engineering Chemistry Research 45:2374–2380

  75. Kallioinen A, Vaari A, Ratto M, Konn J, Siikaaho M, Viikari L (2003) Effects of bacterial treatments on wood extractives. J Biotechnol 103:67–76

  76. Karlsson S, Holmbom B, Spetz P, Mustranta A, Buchert J (2001) Reactivity of Trametes laccases with fatty and resin acids. Appl Microbiol Biotechnol 55:317–320

  77. Kontkanen H, Tenkanen M, Fagerstrom R, Reinikainen T (2004) Characterisation of steryl esterase activities in commercial lipase preparations. J Biotechnol 108:51–59

  78. Kontkanen H, Saloheimo M, Pere J, Miettinen-Oinonen A, Reinikainen T (2006a) Characterization of Melanocarpus albomyces steryl esterase produced in Trichoderma reesei and modification of fibre products with the enzyme. Appl Microbiol Biotechnol 72:696–704

  79. Kontkanen H, Tenkanen M, Reinikainen T (2006b) Purification and characterisation of a novel steryl esterase from Melanocarpus albomyces. Enzyme Microb Technol 39:265–273

  80. Leach JM, Thakore AN (1976) Toxic constituents in mechanical pulping effluents. Tappi 59:129–132

  81. Leone R, Breuil C (1998) Filamentous fungi can degrade aspen steryl esters and waxes. Int Biodeterior Biodegrad 41:133–137

  82. Liss SN, Bicho PA, Saddler JN (1997) Microbiology and biodegradation of resin acids in pulp mill effluents: a minireview. Can J Microbiol 43:599–611

  83. Mancheno JM, Pernas MA, Martinez MJ, Ochoa B, Rua ML, Hermoso JA (2003) Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution. J Mol Biol 332:1059–1069

  84. Marsheck WJ, Kraychy S, Muir RD (1972) Microbial degradation of sterols. Appl Microbiol 23:72–77

  85. Martínez MJ, Barrasa JM, Gutiérrez A, del Río JC, Martínez AT (1999) Fungal screening for biological removal of extractives from Eucalyptus globulus Labill. wood. Can J Bot 77:1513–1522

  86. Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbiological, chemical and enzymatic aspects of fungal attack to lignin. Intern Microbiol 8:195–204

  87. Martínez-Íñigo MJ, Immerzeel P, Gutiérrez A, del Río JC, Sierra-Alvarez R (1999) Biodegradability of extractives in sapwood and heartwood from Scots pine by sapstain and white-rot fungi. Holzforschung 53:247–252

  88. Martínez-Íñigo MJ, Gutiérrez A, del Río JC, Martínez MJ, Martínez AT (2000) Time course of fungal removal of lipophilic extractives from Eucalyptus globulus Labill. wood. J Biotechnol 84:119–126

  89. Matsukura M, Fujita Y, Sakaguchi H (1990) On the use of Resinase™ A for pitch control. Novo A-6122:1-7

  90. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

  91. Molina S, Rencoret J, del Río JC, Lomascolo A, Record E, Martínez AT, Gutiérrez A (2008) Oxidative degradation of model lipids representative for main paper pulp lipophilic extractives by the laccase-mediator system. Appl Microbiol Biotechnol 80:211–222

  92. Morrison WHI, Akin DE (2001) Chemical composition of components comprising bast tissue in flax. J Agric Food Chem 49:2333–2338

  93. Nguyen D, Zhang X, Paice MG, Tsang A, Renaud S (2007) Microplate enzyme assay for screening lipoxygenases to degrade wood extractives. Biocatal Biotransform 25:202–210

  94. Otero D, Sundberg K, Blanco A, Negro C, Holmbom B (2000) Effect of wood polysaccharides on the depositability of wood pitch. Nordic Pulp Paper Res J 15:607–613

  95. Paice MG, Bourbonnais R, Reid ID, Archibald FS, Jurasek L (1995) Oxidative bleaching enzymes: a review. J Pulp Paper Sci 21:J280–J284

  96. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169

  97. Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

  98. Poppius-Levlin K, Wang W, Tamminen T, Hortling B, Viikari L, Niku-Paavola M-L (1999) Effects of laccase/HBT treatment on pulp and lignin structures. J Pulp Paper Sci 25:90–94

  99. Qin M, Hannuksela T, Holmbom B (2003) Physico-chemical characterization of TMP resin and related model mixtures. Colloids Surfaces A 221:243–254

  100. Qin M, Hannuksela T, Holmbom B (2004) Deposition tendency of TMP resin and related model mixtures. J Pulp Paper Sci 30:279–283

  101. Rencoret J, Gutiérrez A, del Río JC (2007) Lipid and lignin composition of woods from different eucalypt species. Holzforschung 61:165–174

  102. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226

  103. Rocheleau MJ, Sitholé BB, Allen LH, Noel Y (1999) Fungal treatment of aspen for wood resin reduction: effect on aged aspen wood chips at room temperature and at 5°C. Holzforschung 53:16–20

  104. Rodríguez Couto S, Toca Herrera JL (2006) Industrial and biotechnologcial applications of laccases: a review. Biotechnol Adv 24:500–513

  105. Saam J, Ivanov I, Walther M, Holzhutter HG, Kuhn H (2007) Molecular dioxygen enters the active site of 12/15-lipoxygenase via dynamic oxygen access channels. Proc Natl Acad Sci USA 104:13319–13324

  106. Sealey J, Ragauskas AJ, Elder TJ (1999) Investigations into laccase-mediator delignification of kraft pulps. Holzforschung 53:498–502

  107. Silvério FO, Barbosa LCA, Maltha CRA, Fidêncio PH, Cruz MP, Veloso DP, Milanez AF (2008) Effect of storage time on the composition and content of wood extractives in Eucalyptus cultivated in Brazil. Biores Technol 99:4878–4886

  108. Silvestre AJD, Pereira CCL, Pascoal Neto C, Evtuguin DV, Duarte AC, Cavaleiro JAS, Furtado FP (1999) Chemical composition of pitch deposits from ECF Eucalyptus globulus bleached kraft pulp mill: Its relationship with wood extractives and additives in process streams. Appita J 52:375–382

  109. Su Y, Wang EI, Farrell R, Ho C-I, Chang H-M (2004) Screening of fungi for removal of wood extractives. Proc 58th Appita Ann Conf Exhibit, Canberra, 19-24 April 27-34

  110. van Beek TA, Kuster B, Claassen FW, Tienvieri T, Bertaud F, Lenon G, Petit-Conil M, Sierra-Alvarez R (2007) Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: Influence on extractive contents, pulping process parameters, paper quality and effluent toxicity. Bioresource Technol 98:302–311

  111. Widsten P, Kandelbauer A (2008) Laccase application in the forest processing industries: a review. Enzyme Microb Technol 42:293–307

  112. Zhang X, Stebbing DW, Saddler JN, Beatson RP, Kruus K (2000) Enzyme treatments of the dissolved and colloidal substances present in mill white water and the effects on the resulting paper properties. J Wood Chem Technol 20:321–335

  113. Zhang X, Eigendorf G, Stebbing DW, Mansfield SD, Saddler JN (2002) Degradation of trilinolein by laccase enzymes. Arch Biochem Biophys 405:44–54

  114. Zhang X, Renaud S, Paice M (2005) The potential of laccase to remove extractives present in pulp and white water from TMP newsprint mills. J Pulp Paper Sci 31:175–180

  115. Zhang X, Nguyen D, Paice MG, Tsang A, Renaud S (2007) Degradation of wood extractives in thermo-mechanical pulp by soybean lipoxygenase. Enzyme Microb Technol 40:866–873

  116. Zimmerman WC, Blanchette RA, Burnes TA, Farrell RL (1995) Melanin and perithecial development in Ophiostoma piliferum. Mycologia 87:857–863

Download references

Acknowledgments

This work was supported by the Spanish projects AGL2008-00709, BIO2005-03569 and BIO2008-01533, and the BIORENEW project of the European Union (contract NMP2-CT-2006-026456).

Author information

Correspondence to Ana Gutiérrez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gutiérrez, A., del Río, J.C. & Martínez, A.T. Microbial and enzymatic control of pitch in the pulp and paper industry. Appl Microbiol Biotechnol 82, 1005–1018 (2009). https://doi.org/10.1007/s00253-009-1905-z

Download citation

Keywords

  • Pitch deposits
  • Paper pulps
  • Wood fungi
  • Fungal enzymes
  • Laccase-mediator system