Applied Microbiology and Biotechnology

, Volume 82, Issue 6, pp 995–1003 | Cite as

Biosynthetic pathways for 3-hydroxypropionic acid production

  • Xinglin Jiang
  • Xin Meng
  • Mo Xian


Biobased platform chemicals have attracted growing interest recently. Among them, 3-hydroxypropionic acid receives significant attention due to its applications in the synthesis of novel polymer materials and other derivatives. To establish a biotechnology route instead of the problematic chemical synthesis of 3-hydroxypropionic acid, biosynthetic pathway is required, and the strategies of how to engineer a microbe to produce this product should be considered. In the present review, we summarize and review all known pathways, which could be potentially constructed for 3-hydroxypropionic acid production. Mass and redox balances are discussed in detail. Thermodynamic favorability is evaluated by standard Gibbs free energy. The assembly of pathways and possible solutions are proposed. Several new techniques and future research needs are also covered.


3-Hydroxypropionic acid Pathway Fermentation Thermodynamics 



This work was financially supported by the CAS 100 Talents Program (KGCX2-YW-801).


  1. Alber BE, Fuchs G (2002) Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Biol Chem 277:12137–12143CrossRefGoogle Scholar
  2. Andersen G, Björnberg O, Polakova S, Pynyaha Y, Rasmussen A, Møller K, Hofer A, Moritz T, Sandrinl MPB, Merico AM, Compagno C, Åkerlund HE, Gojkovic Z, Piškur J (2008) A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes. J Mol Biol 380(4):656–666CrossRefGoogle Scholar
  3. Ansede JH, Pellechia PJ, Yoch DC (1999) Metabolism of acrylate to beta-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl Environ Microbiol 65:5075–5081Google Scholar
  4. Behr A, Botulinski A, Carduck F-j, Schneider M (1996) process for preparing 3-hydroxypropionic acid. Patent application no. EP0579617Google Scholar
  5. Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786CrossRefGoogle Scholar
  6. Burgard AP, Van Dien SJ (2008) Methods and organisms for growth-coupled production of 3-hydroxypropionic acid. Patent application no. 20080199926Google Scholar
  7. Chen X, Zhang DJ, Qi WT, Gao SJ, Xiu ZL, Xu P (2003) Microbial fed-batch production of 1, 3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions. Appl Microbiol Biotechnol 63(2):143–146CrossRefGoogle Scholar
  8. Cheng KK, Zhang JA, Liu DH, Sun Y, Yang MD, Xu JM (2006) Production of 1, 3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnol Lett 28:1817–1821CrossRefGoogle Scholar
  9. Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Weyler W, Sanford K (2000) The commercial production of chemicals using pathway engineering. Biochimica Biophysic Acta Protein Struct Mol Enzymol 1543:434–455CrossRefGoogle Scholar
  10. Dave H, Ramakrishna C, Desai JD (1996) Degradation of acrylic acid by fungi from petrochemical activated sludge. Biotechnol Lett 18:963–964CrossRefGoogle Scholar
  11. Emde R, Schink B (1990) Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56:2771–2776Google Scholar
  12. Garai-Ibabe G, Ibarburu I, Berregi I, Claisse O, Lonvaud-Funel A, Irastorza A, Dueñas MT (2008) Glycerol metabolism and bitterness producing lactic acid bacteria in cider making. Int. J Food Microbiol 121:253–261CrossRefGoogle Scholar
  13. Gill RT, Lynch MD (2008) Compositions and methods for enhancing tolerance for the production of organic chemicals produced by microorganisms. Patent application no. WO/2008/089102Google Scholar
  14. Gokarn RR, Selifonova OV, Jessen HJ, Steven JG, Selmer T, Buckel W (2001) 3-hydroxypropionic acid and other organic compounds. Patent application no. PCT/US2001/043607Google Scholar
  15. Goldberg RN, Tewari YB, Bhat TN (2004) Thermodynamics of enzyme-catalyzed reactions–a database for quantitative biochemistry. Bioinformatics 20:2874–2877CrossRefGoogle Scholar
  16. Guettler MV, Rumler D, Jain MK (1999) Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Bacteriol 49:207–216CrossRefGoogle Scholar
  17. Haas T, Brossmer C, Meier M, Arntz D, Freund A (2000) Process for preparing 3-hydroxypropionic acid or its salt. Patent application no. EP0819670Google Scholar
  18. Hasegawa J, Ogura M, Kanema H, Kawahara H, Watanabe K (1982) Production of beta-hydroxypropionic acid from propionic acid by a Candida rugosa mutant unable to assimilate propionic acid. J Ferment Technol 60:591–594Google Scholar
  19. Herrmann G, Selmer T, Jessen HJ, Gokarn RR, Selifonova O, Gort SJ, Buckel W (2005) Two beta-alanyl-CoA:ammonia lyases in Clostridium propionicum. FEBS Journal 272:813–821CrossRefGoogle Scholar
  20. Herter S, Farfsing J, Gad’On N, Rieder C, Eisenreich W, Bacher A, Fuchs G (2001) Autotrophic CO2 Fixation by Chloroflexus aurantiacus: study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle. J Bacteriol 183:4305–4316CrossRefGoogle Scholar
  21. Herter S, Fuchs G, Bacher A, Eisenreich W (2002) A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. J Biol Chem 277:20277–20283CrossRefGoogle Scholar
  22. Hiramitsu M, Doi Y (1993) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxypropionate). Polymer 34:4782–4786CrossRefGoogle Scholar
  23. Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol 151:252–256CrossRefGoogle Scholar
  24. Hugler M, Menendez C, Schagger H, Fuchs G (2002) Malonyl-Coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation. J Bacteriol 184:2404–2410CrossRefGoogle Scholar
  25. Ishii M, Chuakrut S, Arai H, Igarashi Y (2004) Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle. Appl Microbiol Biotechnol 64:605–610CrossRefGoogle Scholar
  26. Jankowski MD, Henry CS, Broadbelt LJ, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95(3):1487–1499CrossRefGoogle Scholar
  27. Jessen HJ, Liao HH, Gort SJ, Selifonova OV (2008) Beta-alanine/alpha-ketoglutarate aminotransferase for 3-hydroxypropionic acid production. Patent application no. WO/2008/027742Google Scholar
  28. Jo JE, Mohan Raj S, Rathnasingh C, Selvakumar E, Jung WC, Park S (2008) Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-hydroxypropionaldehyde as a substrate. Appl Microbiol Biotechnol 81:51–60CrossRefGoogle Scholar
  29. Leal N, Havemann G, Bobik T (2003) PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B 12-dependent 1, 2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol 180:353–361CrossRefGoogle Scholar
  30. Liao HH, Gokarn RR, Gort SJ, Jessen HJ, Selifonova OV (2005) Alanine 2,3-aminomutase. Patent application no. EP1575881Google Scholar
  31. Liao HH, Gokarn RR, Gort SJ, Jessen HJ, Selifonova OV (2007). Production of 3-hydropropionic acid using beta-alanine/pyruvate aminotransferase. Patent application no. 20070107080Google Scholar
  32. Maris AJAv, Konings WN, Dijken JPv, Pronk JT (2004) Microbial export of lactic and 3-hydroxypropanoic acid: Implications for industrial fermentation processes. Metab Eng 6:245–255CrossRefGoogle Scholar
  33. Marx A, Wendisch VF, Rittmann D, Buchholz S (2007) Microbiological production of 3-hydroxypropionic acid. Patent application no WO/2007/042494Google Scholar
  34. Mavrovouniotis ML (1990) Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36:1070–1082CrossRefGoogle Scholar
  35. Mavrovouniotis ML (1991) Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266:14440–14445Google Scholar
  36. Mavrovouniotis ML (1996) Duality theory for thermodynamic bottlenecks in bioreaction pathways. Chem Eng Sci 51:1495–1507CrossRefGoogle Scholar
  37. Meng XS, Abraham T, Tsobanakis P (2007) Process for preparing 3-hydroxycarboxylic acids. Patent application no. 20070015936Google Scholar
  38. Mochizuki M, Hirami M (1997) Structural effects on the biodegradation of aliphatic polyesters. Polymer Adv Tech 8:203–209CrossRefGoogle Scholar
  39. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1, 3-propanediol. Curr Opin Biotechnol 14(5):454–459CrossRefGoogle Scholar
  40. Pai RA, Doherty MF, Malone MF (2002) Design of reactive extraction systems for bioproduct recovery. AICHE J 48:514–526CrossRefGoogle Scholar
  41. Qatibi AI, Bennisse R, Jana M, Garcia JL (1998) Anaerobic degradation of glycerol by Desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1, 2-propanediol. Curr Microbiol 36:283–290CrossRefGoogle Scholar
  42. Raj SM, Rathnasingh C, Jo JE, Park S (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 43(12):1440–1446CrossRefGoogle Scholar
  43. Schügerl K (2000) Integrated processing of biotechnology products. Biotechnol Adv 18:581–599CrossRefGoogle Scholar
  44. Schwarz M, Köpcke B, Weber R, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochem 65:2239–2245CrossRefGoogle Scholar
  45. Skraly FA, Peoples OP (2003) Polyhydroxyalkanoate production from polyols. Patent application no. 6576450Google Scholar
  46. Stieb M, Schink B (1984) A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. Arch Microbiol 140:139–146CrossRefGoogle Scholar
  47. Straathof AJJ, Sie S, Franco TT, van der Wielen LAM (2005) Feasibility of acrylic acid production by fermentation. Appl Microbiol Biotechnol 67(6):727–734CrossRefGoogle Scholar
  48. Suthers PF, Cameron DC (2001) Production of 3-hydroxypropionic acid in recombinant organisms. Patent application no. PCT WO 01-16346Google Scholar
  49. Takamizawa K, Horitsu H, Ichikawa T, Kawai K, Suzuki T (1993) β-hydroxypropionic acid production by Byssochlamys sp. grown on acrylic acid. Appl Microbiol Biotechnol 40:196–200CrossRefGoogle Scholar
  50. Van Halsema FED, Van der Wielen LAM, Luyben KCAM (1998) The modeling of carbon dioxide-aided extraction of carboxylic acids from aqueous solutions. Ind Eng Chem Res 37:748–758CrossRefGoogle Scholar
  51. Vollenweider S, Lacroix C (2004) 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl Microbiol Biotechnol 64:16–27CrossRefGoogle Scholar
  52. Wang ZX, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223CrossRefGoogle Scholar
  53. Werpy T, Petersen G (2004) Top value added chemicals from biomass, vol 1: results of screening for potential candidates from sugars and synthesis gas. US Department of Energy
  54. Yablochkova EN, Bolotnikova OI, Mikhailova NP, Nemova NN, Ginak AI (2004) The activity of key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium. Microbiology 73:129–133CrossRefGoogle Scholar
  55. Yasuda S, Mukoyama M, Horikawa H, Toraya T, Morita H (2006) Process for producing 1,3-propanediol and/or 3-hydroxypropionic acid. Patent application no. EP1731604Google Scholar
  56. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18(3):213–219CrossRefGoogle Scholar
  57. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552CrossRefGoogle Scholar
  58. Zhu B, Li J, He Y, Yamane H, Kimura Y, Nishida H, Inoue Y (2004) Effect of steric hindrance on hydrogen-bonding interaction between polyesters and natural polyphenol catechin. J Appl Polym Sci 91:3565–3573CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Qingdao Institute of Biomass Energy and Bioprocess TechnologyChinese Academy of Sciences, ChinaQingdaoChina

Personalised recommendations