Applied Microbiology and Biotechnology

, Volume 83, Issue 1, pp 135–141 | Cite as

Heterologous expression of human paraoxonases in Pseudomonas aeruginosa inhibits biofilm formation and decreases antibiotic resistance

  • Fang Ma
  • Yao Wang
  • Yong Zhang
  • Ning Xiong
  • Baoyu Yang
  • Shiyun Chen
Applied Genetics and Molecular Biotechnology

Abstract

Quorum sensing (QS) regulates virulence and biofilm formation in Pseudomonas aeruginosa and other medically relevant bacteria. Human paraoxonases (hPONs) are a family of closely related enzymes with multiple functions, including inactivation of the QS signal molecule in P. aeruginosa. However, there is no direct evidence to show the functions of hPONs on biofilm formation and antibiotic resistance in P. aeruginosa. In the present study, hPONs (hPON1, hPON2, and hPON3) genes were respectively cloned into the pMEKm12 shuttle vector and transformed into P. aeruginosa strain PAO1. Expression of the three recombinant proteins was confirmed by Western blotting, and growth of the recombinant strains was not affected by the hPONs gene expression. Biofilm formation and antibiotics resistance of the hPONs recombinant strains were analyzed. Our results showed that biofilm formation was significantly inhibited in all of the three hPONs recombinant strains. Interestingly, this inhibition can be reverted by addition of the corresponding hPONs polyclonal antibodies in the culture media, further indicating that the inhibition of biofilm formation was due to hPONs protein expression. In addition, we also demonstrated that hPONs expression decreased resistance of P. aeruginosa to gentamicin and ceftazidima, two antibiotics clinically used for the treatment of P. aeruginosa infection.

Keywords

Pseudomonas aeruginosa Biofilm Antibiotic resistance Human paraoxonases Quorum sensing 

Notes

Acknowledgments

This research was supported by a grant from the National Natural Science Foundation of China (#30470997). We thank Prof. Joseph Zabner, University of Iowa College of Medicine, for providing us with the adenovirus plasmids; Prof. Jun Zhu, Nanjing Agricultural University, for the Agrobacterium bioassay strain. We also thank the Animal Experimental Centre of Wuhan Institute of Virology for excellent technical assistance in the preparation of the hPONs polyclonal antibodies.

References

  1. Billecke S, Draganov D, Counsell R, Stetson P, Watson C, Hsu C, La Du BN (2000) Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metab Dispos 28:1335–1342Google Scholar
  2. Carlier A, Uroz S, Smadja B, Fray R, Latour X, Dessaux Y, Faure D (2003) The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-acyl homoserine lactonase activity. Appl Environ Microbiol 69:4989–4993CrossRefGoogle Scholar
  3. Christensen LD, Moser C, Jensen PO, Rasmussen TB, Christophersen L, Kjelleberg S, Kumar N, Hoiby N, Givskov M, Bjarnsholt T (2007) Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153:2312–2320CrossRefGoogle Scholar
  4. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A 101:3587–3590CrossRefGoogle Scholar
  5. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefGoogle Scholar
  6. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298CrossRefGoogle Scholar
  7. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817CrossRefGoogle Scholar
  8. Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN (2005) Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46:1239–1247CrossRefGoogle Scholar
  9. Hardie KR, Heurlier K (2008) Establishing bacterial communities by ‘word of mouth’: LuxS and autoinducer 2 in biofilm development. Nat Rev Microbiol 6:635–643CrossRefGoogle Scholar
  10. Irie Y, Parsek MR (2008) Quorum sensing and microbial biofilms. Curr Top Microbiol Immunol 322:67–84CrossRefGoogle Scholar
  11. Kirov SM, Webb JS, O’May CY, Reid DW, Woo JK, Rice SA, Kjelleberg S (2007) Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 153:3264–3274CrossRefGoogle Scholar
  12. La Du BN, Aviram M, Billecke S, Navab M, Primo-Parmo S, Sorenson RC, Standiford TJ (1999) On the physiological role(s) of the paraoxonases. Chem Biol Interact 119–120:379–388Google Scholar
  13. Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860CrossRefGoogle Scholar
  14. Lu S, Scholz-Schroeder B, Gross D (2002) Construction of pMEKm12, an expression vector for protein production in Pseudomonas syringae. FEMS Microbiol Lett 210:115–121CrossRefGoogle Scholar
  15. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39CrossRefGoogle Scholar
  16. Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14CrossRefGoogle Scholar
  17. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461CrossRefGoogle Scholar
  18. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) The human host defence peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182CrossRefGoogle Scholar
  19. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J (2005) Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 253:29–37CrossRefGoogle Scholar
  20. Park SY, Kang HO, Jang HS, Lee JK, Koo BT, Yum DY (2005) Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 71:2632–2641CrossRefGoogle Scholar
  21. Primo-Parmo SL, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33:498–507CrossRefGoogle Scholar
  22. Reimmann C, Ginet N, Michel L, Keel C, Michaux P, Krishnapillai V, Zala M, Heurlier K, Triandafillu K, Harms H, Defago G, Haas D (2002) Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923–932Google Scholar
  23. Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189:5383–5386CrossRefGoogle Scholar
  24. Schuster M, Greenberg EP (2006) A network of networks: quorum sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296:73–81CrossRefGoogle Scholar
  25. Shih PC, Huang CT (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother 49:309–314CrossRefGoogle Scholar
  26. Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG, Bos R, Daykin M, Camara M, Williams P, Quax WJ (2006) Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 74:1673–1682CrossRefGoogle Scholar
  27. Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113CrossRefGoogle Scholar
  28. Stoltz DA, Ozer EA, Ng CJ, Yu JM, Reddy ST, Lusis AJ, Bourquard N, Parsek MR, Zabner J, Shih DM (2007) Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 292:L852–860CrossRefGoogle Scholar
  29. Teiber JF, Horke S, Haines DC, Chowdhary PK, Xiao J, Kramer GL, Haley RW, Draganov DI (2008) Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-l-homoserine lactone. Infect Immun 76:2512–2519CrossRefGoogle Scholar
  30. Wang H, Zhong Z, Cai T, Li S, Zhu J (2004) Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182:520–525CrossRefGoogle Scholar
  31. Wang Y, Dai Y, Zhang Y, Hu Y, Yang B, Chen S (2007) Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Sci China Ser C Life Sci 50:385–391CrossRefGoogle Scholar
  32. Xu F, Byun T, Deussen HJ, Duke KR (2003) Degradation of N-acylhomoserine lactones, the bacterial quorum-sensing molecules, by acylase. J Biotechnol 101:89–96CrossRefGoogle Scholar
  33. Yang F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH (2005) Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett 579:3713–3717CrossRefGoogle Scholar
  34. Zhu J, Chai Y, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69:6949–6953CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Fang Ma
    • 1
    • 2
    • 3
  • Yao Wang
    • 1
  • Yong Zhang
    • 1
    • 2
  • Ning Xiong
    • 1
    • 2
  • Baoyu Yang
    • 1
  • Shiyun Chen
    • 1
  1. 1.Wuhan Institute of VirologyThe Chinese Academy of SciencesWuhanChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.Shanghai Institute of Materia MedicaThe Chinese Academy of SciencesShanghaiChina

Personalised recommendations