Applied Microbiology and Biotechnology

, Volume 82, Issue 5, pp 951–961 | Cite as

Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies

  • Joana Martins
  • Martin L. Saker
  • Cristiana Moreira
  • Martin Welker
  • Jutta Fastner
  • Vitor M. Vasconcelos
Environmental Biotechnology

Abstract

Strains of the cyanobacterium Microcystis aeruginosa were isolated into pure culture from a variety of lakes, rivers, and reservoirs in Portugal. Samples were tested with matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry (MALDI-TOF MS) to investigate the presence of various peptide groups including aeruginosins, microginins, anabaenopeptins, cyanopeptilins, microcystins, and microviridins and other peptide-like compounds. Binary data, based on the presence and absence of different peptide groups, were analyzed by phylogenetic inference. DNA was also extracted from the samples and tested using a range of primers. Those strains that gave positive results for a Microcystis-specific primer pair were further analyzed for the presence of genes linked to the biosynthesis of microginin and microcystin. The results showed that a wide range of microcystin forms were produced by the strains among which MC-LR, -FR, -RR, -WR, and -YR were the most common. The peptide profiles obtained from the MALDI analysis were assessed using cluster analysis which resulted in the formation of distinct groups or chemotypes.

Keywords

Microcystis Peptides 

References

  1. Baker PD (1992) Identification of common noxious cyanobacteria. Part II—Chroococcales and Oscillatoriales. Research Report No. 46, Australian Centre for Water Treatment and Water Quality ResearchGoogle Scholar
  2. Baker JA, Neilan BA, Entsch B, McKay DB (2001) Identification of cyanobacteria and their toxigenicity in environmental samples by rapid molecular analysis. Environ Toxicol 16:472–482CrossRefGoogle Scholar
  3. Baker JA, Entsch B, Neilan BA, McKay DB (2002) Monitoring changing toxigenicity of a cyanobacterial bloom by molecular techniques. Appl Environ Microbiol 68:6070–6076CrossRefGoogle Scholar
  4. Bourrelly P (1970) Les algues déau douce. Initiation à la systematique. Les algues bleues ou cyanophycées. Editions N. Boubée & CieGoogle Scholar
  5. Christiansen G, Kurmayer R, Liu Q, Börner T (2006) Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol 72(1):117–123CrossRefGoogle Scholar
  6. Chu FS, Huang X, Wei RD (1990) Enzyme linked immunosorbent assay for microcystin in blue green algal blooms. J Assoc Off Anal Chem 73:451–456Google Scholar
  7. Dittmann E, Börner T (2005) Genetic contributions to the risk assessment of microcystin in the environment. Toxicol Appl Pharmacol 203(3):192–200CrossRefGoogle Scholar
  8. Dittmann E, Neilan BA, Börner T (2001) Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. App Microbiol Biotechnol 57:467–473CrossRefGoogle Scholar
  9. Falconer IR, Humpage AR (1996) Tumor promotion by cyanobacterial toxins. Phycologia 35(6):74–79Google Scholar
  10. Fastner J, Erhard M, Carmichael WW, Sun F, Rinehart KL, Rönicke H, Chorus I (1999) Characterization and diversity of microcystins in natural blooms and strains of the genera Microcystis and Planktothrix from German freshwaters. Arch Hydrobiol 145:147–163Google Scholar
  11. Fastner J, Erhard M, Döhren H (2001) Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization–time of flight mass spectrometry. App Environ Microbiol 67:5069–5076CrossRefGoogle Scholar
  12. Felsenstein J (1989) PHYLIP. Phylogeny inference package. Cladistics 5:164–166Google Scholar
  13. Haande S, Ballot A, Rohrlack T, Fastner J, Wiedner C, Edvardsen B (2007) Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Arch Microbiol 188:15–25CrossRefGoogle Scholar
  14. Hisbergues M, Christiansen G, Rouhiainen L, Sivonen K, Börner T (2003) PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch Microbiol 180:402–410CrossRefGoogle Scholar
  15. Ishida K, Matsuda H, Murakami M, Yamaguchi K (1997) Microginins 299-A and -B, leucine aminopeptidase inhibitors from the cyanobacterium Microcystis aeruginosa (NIES-299). Tetrahedron 53:10281–10288CrossRefGoogle Scholar
  16. Ishida K, Matsuda H, Murakami M (1998) Four new microginins, linear peptides from the cyanobacterium Microcystis aeruginosa. Tetrahedron 54:13475–13484CrossRefGoogle Scholar
  17. Ishida K, Kato T, Murakami M, Watanabe M, Watanabe MF (2000) Microginins, zinc metalloproteases inhibitors from the cyanobacterium Microcystis aeruginosa. Tetrahedron 56:8643–8656CrossRefGoogle Scholar
  18. Jungblut A-D, Hawes I, Mountfort D, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529CrossRefGoogle Scholar
  19. Kotai J (1972) Instructions for preparation of modified nutrient solution for algae, vol. 5. Norwegian Institute for Water Research, Oslo, pp 11–69Google Scholar
  20. Kotak BG, Lam AKY, Prepas EE, Kenefick SL, Hrudy SE (1995) Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes. J Phycol 32:248–263CrossRefGoogle Scholar
  21. Kuiper-Goodman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN Spon, London, pp 113–153Google Scholar
  22. Kurmayer R, Dittmann E, Fastner J, Chorus I (2002) Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb Ecol 43:107–118CrossRefGoogle Scholar
  23. Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cyanobacteria. J Ind Microbiol 17:373–384CrossRefGoogle Scholar
  24. Neilan BA, Jacobs D, Deldot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697CrossRefGoogle Scholar
  25. Neumann U, Forchert A, Flury T, Weckesser J (1997) Microginin FR1, a linear peptide from a water bloom of Microcystis aeruginosa. FEMS Microbiol Lett 153:475–478CrossRefGoogle Scholar
  26. Nonneman D, Zimba PV (2002) A PCR-based test to assess the potential for microcystin occurrence in channel catfish production ponds. J Phycol 38:230–233CrossRefGoogle Scholar
  27. Ouellette AJA, Wilhelm SW (2003) Toxic cyanobacteria: the evolving molecular toolbox. Front Ecol Environ 1(7):359–366Google Scholar
  28. Oullette AJA, Handy SM, Wilhelm W (2006) Toxic Microcystis is widespread in Lake Erie: PCR detection of toxin genes and molecular characterization of associated cyanobacterial communities. Microbiol Ecol 51(12):154–165CrossRefGoogle Scholar
  29. Saker ML, Fastner J, Dittmann E, Christiansen G, Vasconcelos VM (2005a) Variation between strains of the cyanobacterium Microcystis aeruginosa isolated from a Portuguese river. J Appl Microbiol 99:749–757CrossRefGoogle Scholar
  30. Saker ML, Jungblut A-D, Neilan BA, Rawn DFK, Vasconcelos VM (2005b) Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon 46:555–562CrossRefGoogle Scholar
  31. Saker ML, Vale M, Vasconcelos VM (2006) Molecular techniques for the early warning of toxic cyanobacteria blooms in freshwater lakes and rivers. Appl Microbiol Biotechnol 75:441–449CrossRefGoogle Scholar
  32. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN Spon, London, pp 113–153Google Scholar
  33. Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16s rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67:2810–2818CrossRefGoogle Scholar
  34. Vasconcelos VM (2001) Freshwater cyanobacteria and their toxins in Portugal. In: Chorus I (ed) Cyanotoxins—occurrence, causes, consequences. Springer, Berlin, pp 62–67Google Scholar
  35. Vasconcelos VM, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1995) Isolation and characterization of microcystins (heptapeptide hepatotoxins) from Portuguese strains of Microcystis aeruginosa Kutz emend Elekin. Arch Hydrobiol 134:295–305Google Scholar
  36. Vasconcelos VM, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1996) Microcystin (heptapeptide hepatotoxins) diversity in cyanobacterial blooms collected in Portuguese fresh waters. Water Res 30:2377–2384CrossRefGoogle Scholar
  37. Vezie C, Brient L, Sivonen K, Bertru G, Lefeuvre JC, Salkinoja-Salonen M (1998) Variation of microcystin content of cyanobacterial blooms and isolated strains in Grand-lieu lake (France). Microb Ecol 35:126–135CrossRefGoogle Scholar
  38. Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komarek J, Erhard M, Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis spp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst Appl Microbiol 27:592–602CrossRefGoogle Scholar
  39. Welker M, von Döhren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563CrossRefGoogle Scholar
  40. Welker M, Fastner J, Erhard M, von Döhren H (2002) Application of MALDI-TOF MS in cyanotoxin research. Environ Toxicol 17:367–374CrossRefGoogle Scholar
  41. Welker M, Brunke M, Preussel K, Lippert I, von Döhren H (2004) Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology 150:1785–1796CrossRefGoogle Scholar
  42. Welker M, Maršálek B, Šejnohová L, von Döhren H (2006) Detection and identification of oligopeptides in Microcystis colonies: toward an understanding of metabolic diversity. Peptides 27(9):2090–2103CrossRefGoogle Scholar
  43. WHO (1998) Guidelines for Drinking-Water Quality. Addendum to vol. 2: Health Criteria and other Supporting Information, 2nd edn. World Health Organization, GenevaGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Joana Martins
    • 1
  • Martin L. Saker
    • 1
  • Cristiana Moreira
    • 1
  • Martin Welker
    • 2
  • Jutta Fastner
    • 2
  • Vitor M. Vasconcelos
    • 1
    • 3
  1. 1.Centro Interdisciplinar de Investigação Marinha e Ambiental, CIIMAR/CIMAR–LAPortoPortugal
  2. 2.Institut für Chemie, AG Biochemie und Molekulare BiologieTechnische Universität BerlinBerlinGermany
  3. 3.Departamento de Zoologia e Antropologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations