Metabolic effects of furaldehydes and impacts on biotechnological processes

  • João R. M. Almeida
  • Magnus Bertilsson
  • Marie F. Gorwa-Grauslund
  • Steven Gorsich
  • Gunnar LidénEmail author


There is a growing awareness that lignocellulose will be a major raw material for production of both fuel and chemicals in the coming decades—most likely through various fermentation routes. Considerable attention has been given to the problem of finding efficient means of separating the major constituents in lignocellulose (i.e., lignin, hemicellulose, and cellulose) and to efficiently hydrolyze the carbohydrate parts into sugars. In these processes, by-products will inevitably form to some extent, and these will have to be dealt with in the ensuing microbial processes. One group of compounds in this category is the furaldehydes. 2-Furaldehyde (furfural) and substituted 2-furaldehydes—most importantly 5-hydroxymethyl-2-furaldehyde—are the dominant inhibitory compounds found in lignocellulosic hydrolyzates. The furaldehydes are known to have biological effects and act as inhibitors in fermentation processes. The effects of these compounds will therefore have to be considered in the design of biotechnological processes using lignocellulose. In this short review, we take a look at known metabolic effects, as well as strategies to overcome problems in biotechnological applications caused by furaldehydes.


Furfural Hydroxymethylfurfural Reductases Bioconversion Inhibition 



JA, MB, GL, and MFGG were financially supported by the Swedish Energy Agency. SG was financially supported by the Research Excellence Funds, ORSP, Central Michigan University.


  1. Abdulmalik O, Safo MK, Chen Q, Yang J, Brugnara C, Ohene-Frempong K, Abraham DJ, Asakura T (2005) 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br J Haematol 128:552–561CrossRefGoogle Scholar
  2. Adams TB, Doull J, Goodman JI, Munro IC, Newberne P, Portoghese PS, Smith RL, Wagner BM, Weil CS, Woods LA, Ford RA (1997) The FEMA GRAS assessment of furfural used as a flavour ingredient. Food Chem Toxicol 35:739–751CrossRefGoogle Scholar
  3. Alkasrawi M, Rudolf A, Lidén G, Zacchi G (2006) Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enz Microb Technol 38:279–286Google Scholar
  4. Almeida JR, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349CrossRefGoogle Scholar
  5. Almeida JR, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund MF (2008a) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:939–945CrossRefGoogle Scholar
  6. Almeida JR, Modig T, Roder A, Lidén G, Gorwa-Grauslund MF (2008b) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnol Biofuels 1:12CrossRefGoogle Scholar
  7. Alriksson B, Horváth I, Sjöde A, Nilvebrant N-O, Jönsson L (2005) Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 124:911–922CrossRefGoogle Scholar
  8. Alriksson B, Sjöde A, Nilvebrant N-O, Jönsson L (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 130:599–611CrossRefGoogle Scholar
  9. Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Arguelles JC (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiol 148:2599–2606Google Scholar
  10. Arguelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224CrossRefGoogle Scholar
  11. Banerjee N, Bhatnagar R, Viswanathan L (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 11:226–228CrossRefGoogle Scholar
  12. Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267CrossRefGoogle Scholar
  13. Bhandari N, MacDonald DG, Bakhshi N (1984) Kinetic studies of corn stover saccharification using sulphuric acid. Biotechnol Bioeng 26:320–327CrossRefGoogle Scholar
  14. Boopathy R, Bokang H, Daniels L (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J Ind Microbiol Biotechnol 11:147–150Google Scholar
  15. Boyer LJ, Vega JL, Klasson KT, Clausen EC, Gaddy JL (1992) The effects of furfural on ethanol production by Saccharomyces cerevisiae in batch culture. Biomass Bioenergy 3:41–48CrossRefGoogle Scholar
  16. Brandberg T, Franzén CJ, Gustafsson L (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98:122–125Google Scholar
  17. Burcham PC, Kaminskas LM, Fontaine FR, Petersen DR, Pyke SM (2002) Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products. Toxicol 181–182:229–236CrossRefGoogle Scholar
  18. Canettieri EV, Rocha GJdM, de Carvalho JJA, de Almeida e Silva JB (2007) Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Biores Technol 98:422–428CrossRefGoogle Scholar
  19. Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461CrossRefGoogle Scholar
  20. Chen S-F, Mowery RA, Chambliss CK, van Walsum GP (2007) Pseudo reaction kinetics of organic degradation products in dilute-acid-catalyzed corn stover pretreatment hydrolysates. Biotechnol Bioeng 98:1135–1145CrossRefGoogle Scholar
  21. Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D (2008) Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Sci 321:1493–1495CrossRefGoogle Scholar
  22. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enz Microb Technol 19:220–225CrossRefGoogle Scholar
  23. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRefGoogle Scholar
  24. García-Aparicio M, Ballesteros I, González A, Oliva J, Ballesteros M, Negro M (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288CrossRefGoogle Scholar
  25. Gibson BR, Lawrence SJ, Boulton CA, Box WG, Graham NS, Linforth RST, Smart KA (2008) The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res 8:574–585CrossRefGoogle Scholar
  26. Gorsich S, Dien B, Nichols N, Slininger P, Liu Z, Skory C (2006a) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349CrossRefGoogle Scholar
  27. Gorsich SW, Slininger PJ, McCaffery JM (2006b) The fermentation inhibitor furfural causes cellular damage to Saccharomyces cerevisiae. Biotechnology for Fuels And Chemicals Symposium Proceedings Paper No. 4–17Google Scholar
  28. Grant CM, Collinson LP, Roe J-H, Dawes IW (1996) Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21:171–179CrossRefGoogle Scholar
  29. Gupta GD, Misra A, Agarwal DK (1991) Inhalation toxicity of furfural vapours: an assessment of biochemical response in rat lungs. J Appl Toxicol 11:343–347CrossRefGoogle Scholar
  30. Gutiérrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1-An enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164CrossRefGoogle Scholar
  31. Hadi SM, Shahabuddin, Rehman A (1989) Specificity of the interaction of furfural with DNA. Mutat Res 225:101–106CrossRefGoogle Scholar
  32. Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1:497–506CrossRefGoogle Scholar
  33. Heeren G, Jarolim S, Laun P, Rinnerthaler M, Stolze K, Perrone GG, Kohlwein SD, Nohl H, Dawes IW, Breitenbach M (2004) The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway. FEMS Yeast Res 5:157–167CrossRefGoogle Scholar
  34. Huang H-J, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Pur Technol 62:1–21CrossRefGoogle Scholar
  35. Janzowski C, Glaab V, Samimi E, Schlatter J, Eisenbrand G (2000) 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem Toxicol 38:801–809CrossRefGoogle Scholar
  36. Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167–175CrossRefGoogle Scholar
  37. Kanner J, Harel S, Fishbein Y, Shalom P (1981) Furfural accumulation in stored orange juice concentrates. J Agric Food Chem 29:948–949CrossRefGoogle Scholar
  38. Kelly C, Jones O, Barnhart C, Lajoie C (2008) Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis. Appl Biochem Biotechnol 148:97–108CrossRefGoogle Scholar
  39. Khan QA, Hadi SM (1993) Effect of furfural on plasmid DNA. Biochem Mol Biol Int 29:1153–1160Google Scholar
  40. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRefGoogle Scholar
  41. Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch Stärke 42:314–321CrossRefGoogle Scholar
  42. Laadan B, Almeida JR, Radstrom P, Hahn-Hägerdal B, Gorwa-Grauslund MF (2008) Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 25:191–198CrossRefGoogle Scholar
  43. Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta 1780:892–898Google Scholar
  44. Larroy C, Fernandez MR, Gonzalez E, Pares X, Biosca JA (2002a) Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J 361:163–172CrossRefGoogle Scholar
  45. Larroy C, Pares X, Biosca JA (2002b) Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur J Biochem 269:5738–5745CrossRefGoogle Scholar
  46. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enz Microbial Technol 24:151–159CrossRefGoogle Scholar
  47. Lecomte J, Finiels A, Moreau C (1999) A new selective route to 5-hydroxymethylfurfural from furfural and furfural derivatives over microporous solid acidic catalysts. Ind Crop Prod 9:235–241CrossRefGoogle Scholar
  48. Lee YC, Shlyankevich M, Jeong HK, Douglas JS, Surh YJ (1995) Bioactivation of 5-hydroxymethyl-2-furaldehyde to an electrophilic and mutagenic allylic sulfuric acid ester. Biochem Biophys Res Commun 209:996–1002CrossRefGoogle Scholar
  49. Lee Y, Iyer P, Torget R (1999) Dilute-acid hydrolysis of lignocellulosic biomass. In: Scheper T (ed) Recent progress in bioconversion of lignocellulosics. Springer, Berlin, pp 93–115CrossRefGoogle Scholar
  50. Linden T, Peetre J, Hahn-Hägerdal B (1992) Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl Environ Microbiol 58:1661–1669Google Scholar
  51. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352Google Scholar
  52. Liu Z, Slininger P, Gorsich S (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121:451–460CrossRefGoogle Scholar
  53. Liu ZL, Moon J, Andersh JB, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753CrossRefGoogle Scholar
  54. Lopez MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64:125–131CrossRefGoogle Scholar
  55. Mains GH, Laforge FB (1924) Furfural from corncobs. Ind Eng Chem 16:356–359CrossRefGoogle Scholar
  56. Martin C, Jonsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enz Microbial Technol 32:386–396CrossRefGoogle Scholar
  57. Martín C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microb Technol 31:274–282CrossRefGoogle Scholar
  58. Martín C, Marcet M, Almazán O, Jönsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Biores Technol 98:1767–1773CrossRefGoogle Scholar
  59. Michail K, Matzi V, Maier A, Herwig R, Greilberger J, Juan H, Kunert O, Wintersteiger R (2007) Hydroxymethylfurfural: an enemy or a friendly xenobiotic? A bioanalytical approach. Anal Bioanal Chem 387:2801–2814CrossRefGoogle Scholar
  60. Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776CrossRefGoogle Scholar
  61. Modig T, Almeida JR, Gorwa-Grauslund MF, Lidén G (2008) Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol Bioeng 100:423–429CrossRefGoogle Scholar
  62. Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30CrossRefGoogle Scholar
  63. Mosier NS, Ladisch CM, Ladisch MR (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng 79:610–618CrossRefGoogle Scholar
  64. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686CrossRefGoogle Scholar
  65. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Biores Technol 93:1–10CrossRefGoogle Scholar
  66. Navarro AR (1994) Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models. Curr Microbiol 29:87–90CrossRefGoogle Scholar
  67. Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98–100:49–58CrossRefGoogle Scholar
  68. Nguyen Q, Tucker M, Keller F, Beaty D, Connors K, Eddy F (1999) Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 77:133–142CrossRefGoogle Scholar
  69. Nguyen Q, Tucker M, Keller F, Eddy F (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576CrossRefGoogle Scholar
  70. Nichols NN, Sharma LN, Mowery RA, Chambliss CK, van Walsum GP, Dien BS, Iten LB (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enz Microb Technol 42:624–630CrossRefGoogle Scholar
  71. Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27CrossRefGoogle Scholar
  72. Nilsson A, Taherzadeh MJ, Lidén G (2001) Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. J Biotechnol 89:41–53CrossRefGoogle Scholar
  73. Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71:7866–7871CrossRefGoogle Scholar
  74. Nilvebrant N-O, Reimann A, Larsson S, Jönsson L (2001) Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl Biochem Biotechnol 91–93:35–49CrossRefGoogle Scholar
  75. Öhgren K, Galbe M, Zacchi G (2005) Optimization of steam pretreatment of SO2-impregnated corn stover for fuel ethanol production. Appl Biochem Biotechnol 124:1055–1067CrossRefGoogle Scholar
  76. Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30:863–869CrossRefGoogle Scholar
  77. Ohta S, Ohsawa I (2006) Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer’s disease: on defects in the cytochrome c oxidase complex and aldehyde detoxification. J Alzheimers Dis 9:155–166Google Scholar
  78. Ohta S, Ohsawa I, Kamino K, Ando F, Shimokata H (2004) Mitochondrial ALDH2 deficiency as an oxidative stress. Ann N Y Acad Sci 1011:36–44CrossRefGoogle Scholar
  79. Oliva J, Sáez F, Ballesteros I, González A, Negro M, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105:141–153CrossRefGoogle Scholar
  80. Olofsson K, Rudolf A, Lidén G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120CrossRefGoogle Scholar
  81. Palmqvist E, Almeida JS, Hahn-Hägerdal B (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62:447–454CrossRefGoogle Scholar
  82. Perrone GG, Tan SX, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783:1354–1368CrossRefGoogle Scholar
  83. Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464CrossRefGoogle Scholar
  84. Pfeifer PA, Bonn G, Bobleter O (1984) Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlsbergensis W 34. Biotechnol Lett 6:541–546CrossRefGoogle Scholar
  85. Quesada Granados J, VillalonMir M, Lopez Garcia-Serrana H, Lopez Martinez MC (1996) Influence of aging factors on the furanic aldehyde contents of matured brandies: aging markers. J Agric Food Chem 44:1378–1381CrossRefGoogle Scholar
  86. Ramirez-Jimenez A, Guerra-Hernandez E, Garcia-Villanova B (2000) Browning indicators in bread. J Agric Food Chem 48:4176–4181CrossRefGoogle Scholar
  87. Ranatunga T, Jervis J, Helm R, McMillan J, Hatzis C (1997) Identification of inhibitory components toxic toward Zymomonas mobilis CP4(pZB5) xylose fermentation. Appl Biochem Biotechnol 67:185–198CrossRefGoogle Scholar
  88. Ranganathan S, Douglas GM, Narendra NB (1985) Kinetic studies of wheat straw hydrolysis using sulphuric acid. Can J Chem Eng 63:840–844Google Scholar
  89. Reynolds SH, Stowers SJ, Patterson RM, Maronpot RR, Aaronson SA, Anderson MW (1987) Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Sci 237:1309–1316CrossRefGoogle Scholar
  90. Rizzi M, Erlemann P, Bui-Thanh N-A, Dellweg H (1988) Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154CrossRefGoogle Scholar
  91. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crop Prod 17:171–176CrossRefGoogle Scholar
  92. Rodriguez-Arnaiz R, Romas Morales P, Zimmering S (1992) Evaluation in Drosophila melanogaster of the mutagenic potential of furfural in the mei-9a test for chromosome loss in germ-line cells and the wing spot test for mutational activity in somatic cells. Mutat Res 280:75–80CrossRefGoogle Scholar
  93. Rudolf A, Galbe M, Lidén G (2004) Controlled fed-batch fermentations of dilute-acid hydrolysate in pilot development unit scale. Appl Biochem Biotechnol 114:601–617CrossRefGoogle Scholar
  94. Rudolf A, Alkasrawi M, Zacchi G, Lidén G (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enz Microb Technol 37:195–204CrossRefGoogle Scholar
  95. Rudolf A, Baudel H, Zacchi G, Hahn-Hägerdal B, Lidén G (2008) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99:783–790CrossRefGoogle Scholar
  96. Saha B (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  97. Sanchez B, Bautista J (1988) Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enz Microb Technol 10:315–318CrossRefGoogle Scholar
  98. Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Biores Technol 99:5270–5295CrossRefGoogle Scholar
  99. Sangarunlert W, Piumsomboon P, Ngamprasertsith S (2007) Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk. Kor J Chem Eng 24:936–941CrossRefGoogle Scholar
  100. Sarvari Horvath I, Franzen CJ, Taherzadeh MJ, Niklasson C, Lidén G (2003) Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol 69:4076–4086CrossRefGoogle Scholar
  101. Sigler K, Chaloupka J, Brozmanová J, Stadler N, Höfer M (1999) Oxidative stress in microorganisms—I. Folia Microbiol 44:587–624CrossRefGoogle Scholar
  102. Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy 24:475–486CrossRefGoogle Scholar
  103. Szengyel Z, Zacchi G (2000) Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30. Appl Biochem Biotechnol 89:31–42CrossRefGoogle Scholar
  104. Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36:4659–4665CrossRefGoogle Scholar
  105. Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:701–708CrossRefGoogle Scholar
  106. Talebnia F, Niklasson C, Taherzadeh MJ (2005) Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol Bioeng 90:345–353CrossRefGoogle Scholar
  107. Tanel A, Averill-Bates DA (2007) Activation of the death receptor pathway of apoptosis by the aldehyde acrolein. Free Radic Biol Med 42:798–810CrossRefGoogle Scholar
  108. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100:1122–1131CrossRefGoogle Scholar
  109. Uchida K (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 28:1685–1696CrossRefGoogle Scholar
  110. Villa GP, Bartroli R, Lopez R, Guerra M, Enrique M, Penas M, Rodriquez E, Redondo D, Iglesias I, Diaz M (1992) Microbial transformation of furfural to furfuryl alcohol by Saccharomyces-cerevisiae. Acta Biotechnol 12:509–512CrossRefGoogle Scholar
  111. von Sivers M, Zacchi G, Olsson L, Hahn-Hägerdal B (1994) Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555–560CrossRefGoogle Scholar
  112. Wahlbom CF, Hahn-Hägerdal B (2002) Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 78:172–178CrossRefGoogle Scholar
  113. Watson NE, Prior BA, Lategan PM, Lussi M (1984) Factors in acid treated bagasse inhibiting ethanol production from d-xylose by Pachysolen tannophilus. Enz Microb Technol 6:451–456CrossRefGoogle Scholar
  114. Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Leeuwenhoek 58:209–217CrossRefGoogle Scholar
  115. Wiseman A (2005) Avoidance of oxidative-stress perturbation in yeast bioprocesses by proteomic and genomic biostrategies? Lett Appl Microbiol 40:37–43CrossRefGoogle Scholar
  116. Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33CrossRefGoogle Scholar
  117. Zdzienicka M, Tudek B, Zielenska M, Szymczyk T (1978) Mutagenic activity of furfural in Salmonella typhimurium TA100. Mutat Res 58:205–209CrossRefGoogle Scholar
  118. Zverlov V, Berezina O, Velikodvorskaya G, Schwarz W (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • João R. M. Almeida
    • 1
  • Magnus Bertilsson
    • 2
  • Marie F. Gorwa-Grauslund
    • 1
  • Steven Gorsich
    • 3
  • Gunnar Lidén
    • 2
    Email author
  1. 1.Department of Applied MicrobiologyLund UniversityLundSweden
  2. 2.Department Chemical EngineeringLund UniversityLundSweden
  3. 3.Biology DepartmentCentral Michigan UniversityMt. PleasantUSA

Personalised recommendations